Zobrazit minimální záznam

dc.contributor.authorElloumi, Walid
dc.contributor.authorBaklouti, Nesrine
dc.contributor.authorAbraham, Ajith
dc.contributor.authorAlimi, Adel M.
dc.date.accessioned2015-01-13T14:17:14Z
dc.date.available2015-01-13T14:17:14Z
dc.date.issued2014
dc.identifier.citationJournal of Intelligent & Fuzzy Systems. 2014, vol. 27, no. 1, p. 515-525.cs
dc.identifier.issn1064-1246
dc.identifier.issn1875-8967
dc.identifier.urihttp://hdl.handle.net/10084/106307
dc.description.abstractIn this paper, we illustrate a novel optimization approach based on Multi-objective Particle Swarm Optimization (MOPSO) and Fuzzy Ant Colony Optimization (FACO). The basic idea is to combine these two techniques using the best particle of the Fuzzy Ant algorithm and integrate it as the best local Particle Swarm Optimization (PSO), to formulate a new approach called hybrid MOPSO with FACO (H-MOPSO-FACO). This hybridization solves the multi-objective problem, which relies on both time performance criteria and the shortest path. Experimental results illustrate that the proposed method is efficient.cs
dc.language.isoencs
dc.publisherIOS Presscs
dc.relation.ispartofseriesJournal of Intelligent & Fuzzy Systemscs
dc.relation.urihttp://dx.doi.org/10.3233/IFS-131020cs
dc.titleThe multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimizationcs
dc.typearticlecs
dc.identifier.doi10.3233/IFS-131020
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume27cs
dc.description.issue1cs
dc.description.lastpage525cs
dc.description.firstpage515cs
dc.identifier.wos000340435700046


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam