Zobrazit minimální záznam

dc.contributor.authorKárný, Miroslav
dc.contributor.authorGuy, Tatiana V.
dc.contributor.authorKracík, Jan
dc.contributor.authorNedoma, Petr
dc.contributor.authorBodini, Antonella
dc.contributor.authorRuggeri, Fabrizio
dc.date.accessioned2015-02-20T12:55:00Z
dc.date.available2015-02-20T12:55:00Z
dc.date.issued2014
dc.identifier.citationStatistics and Its Interface. 2014, vol. 7, no. 4, p. 503-515.cs
dc.identifier.issn1938-7989
dc.identifier.issn1938-7997
dc.identifier.urihttp://hdl.handle.net/10084/106447
dc.description.abstractAn exploitation of prior knowledge in parameter estimation becomes vital whenever measured data is not informative enough. Elicitation of quantified prior knowledge is a well-elaborated art in societal and medical applications but not in the engineering ones. Frequently required involvement of a facilitator is mostly unrealistic due to either facilitator’s high costs or complexity of modelled relationships that cannot be grasped by humans. This paper provides a facilitator-free approach based on an advanced knowledge-sharing methodology. It presents the approach on commonly available types of knowledge and applies the methodology to a normal controlled autoregressive model.cs
dc.language.isoencs
dc.publisherInternational Press of Bostoncs
dc.relation.ispartofseriesStatistics and Its Interfacecs
dc.relation.urihttp://dx.doi.org/10.4310/SII.2014.v7.n4.a7cs
dc.titleFully probabilistic knowledge expression and incorporationcs
dc.typearticlecs
dc.identifier.doi10.4310/SII.2014.v7.n4.a7
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume7cs
dc.description.issue4cs
dc.description.lastpage515cs
dc.description.firstpage503cs
dc.identifier.wos000348624200008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam