Zobrazit minimální záznam

dc.contributor.authorKrömer, Pavel
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2015-03-09T12:03:04Z
dc.date.available2015-03-09T12:03:04Z
dc.date.issued2014
dc.identifier.citationInternational Journal of Parallel Programming. 2014, vol. 42, issue 5, p. 681-709.cs
dc.identifier.issn0885-7458
dc.identifier.issn1573-7640
dc.identifier.urihttp://hdl.handle.net/10084/106674
dc.description.abstractGraphic processing units (GPUs) emerged recently as an exciting new hardware environment for a truly parallel implementation and execution of Nature and Bio-inspired Algorithms with excellent price-to-power ratio. In contrast to common multicore CPUs that contain up to tens of independent cores, the GPUs represent a massively parallel single-instruction multiple-data devices that can nowadays reach peak performance of hundreds and thousands of giga floating-point operations per second. Nature and Bio-inspired Algorithms implement parallel optimization strategies in which a single candidate solution, a group of candidate solutions (population), or multiple populations seek for optimal solution or set of solutions of given problem. Genetic algorithms (GA) constitute a family of traditional and very well-known nature-inspired populational meta-heuristic algorithms that have proved its usefulness on a plethora of tasks through the years. Differential evolution (DE) is another efficient populational meta-heuristic algorithm for real-parameter optimization. Particle swarm optimization (PSO) can be seen as nature-inspired multiagent method in which the interaction of simple independent agents yields intelligent collective behavior. Simulated annealing (SA) is global optimization algorithm which combines statistical mechanics and combinatorial optimization with inspiration in metallurgy. This survey provides a brief overview of the latest state-of-the-art research on the design, implementation, and applications of parallel GA, DE, PSO, and SA-based methods on the GPUscs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesInternational Journal of Parallel Programmingcs
dc.relation.urihttps://doi.org/10.1007/s10766-013-0292-3cs
dc.titleNature-inspired meta-heuristics on modern GPUs: state of the art and brief survey of selected algorithmscs
dc.typearticlecs
dc.identifier.doi10.1007/s10766-013-0292-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume42cs
dc.description.issue5cs
dc.description.lastpage709cs
dc.description.firstpage681cs
dc.identifier.wos000337092000001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam