Zobrazit minimální záznam

dc.contributor.authorIdris, Ismaila
dc.contributor.authorSelamat, Ali
dc.contributor.authorNguyen, Ngoc Thanh
dc.contributor.authorOmatu, Sigeru
dc.contributor.authorKrejcar, Ondřej
dc.contributor.authorKuča, Kamil
dc.contributor.authorPenhaker, Marek
dc.date.accessioned2015-04-27T07:57:09Z
dc.date.available2015-04-27T07:57:09Z
dc.date.issued2015
dc.identifier.citationEngineering Applications of Artificial Intelligence. 2015, vol. 39, p. 33-44.en
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.urihttp://hdl.handle.net/10084/106706
dc.description.abstractEmail is a convenient means of communication throughout the entire world today. The increased popularity of email spam in both text and images requires a real-time protection mechanism for the media flow. The previous approach has been limited by the adaptive nature of unsolicited email spam. This research introduces an email detection system that is designed based on an improvement in the negative selection algorithm. Furthermore, particle swarm optimization (PSO) was implemented to improve the random detector generation in the negative selection algorithm (NSA). The algorithm generates detectors in the random detector generation phase of the negative selection algorithm. The combined NSA–PSO uses a local outlier factor (LOF) as the fitness function for the detector generation. The detector generation process is terminated when the expected spam coverage is reached. A distance measure and a threshold value are employed to enhance the distinctiveness between the non-spam and spam detectors after the detector generation. The implementation and evaluation of the models are analyzed. The results show that the accuracy of the proposed NSA–PSO model is better than the accuracy of the standard NSA model. The proposed model with the best accuracy is further used to differentiate between spam and non-spam in a network that is developed based on a client–server network for spam detection.en
dc.language.isoen
dc.relation.ispartofseriesEngineering Applications of Artificial Intelligence
dc.relation.urihttp://dx.doi.org/10.1016/j.engappai.2014.11.001
dc.rightsCopyright © 2014 Elsevier Ltd. All rights reserved.en
dc.titleA combined negative selection algorithm-particle swarm optimization for an email spam detection systemen
dc.typearticleen
dc.identifier.doi10.1016/j.engappai.2014.11.001
dc.type.statusPeer-revieweden
dc.description.sourceWeb of Science
dc.description.volume39
dc.description.lastpage44
dc.description.firstpage33
dc.identifier.wos000349878400004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam