Zobrazit minimální záznam

dc.contributor.authorGiacometti, Rosella
dc.contributor.authorOrtobelli, Sergio
dc.contributor.authorTichý, Tomáš
dc.date.accessioned2015-05-18T11:46:36Z
dc.date.available2015-05-18T11:46:36Z
dc.date.issued2015
dc.identifier.citationPrague Economic Papers. 2015, vol. 24, issue 1, p. 3-16.cs
dc.identifier.issn1210-0455
dc.identifier.urihttp://hdl.handle.net/10084/106753
dc.description.abstractAssuming a non-satiable risk-averse investor, the standard approach to portfolio selection suggests discarding of all ineffi cient investment in terms of mean return and its standard deviation ratio within its fi rst step. However, in literature we can fi nd many alternative dispersion and risk measures that can help us to identify the most suitable investment opportunity. In this work two new dispersion measures, fulfi lling the condition that “more is better than less” are proposed. Moreover, their distinct characteristics are analysed and empirically compared. In particular, starting from the defi nition of dispersion measures, we discuss the property of consistency with respect to additive shifts and we examine two dispersion measures that satisfy this property. Finally, we empirically compare the proposed dispersion measures with the standard deviation and the conditional value at risk on the US stock market. Moreover, within the empirical example the so called “alarm” is incorporated in order to predict potential fails of the market.cs
dc.language.isoencs
dc.publisherVysoká škola ekonomická v Prazecs
dc.relation.ispartofseriesPrague Economic Paperscs
dc.relation.urihttp://www.vse.cz/polek/download.php?jnl=pep&pdf=497.pdfcs
dc.titlePortfolio selection with uncertainty measures consistent with additive shiftscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.description.issue1cs
dc.description.lastpage16cs
dc.description.firstpage3cs
dc.identifier.wos000351415700001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam