Zobrazit minimální záznam

dc.contributor.authorRachůnková, Irena
dc.contributor.authorStryja, Jakub
dc.date.accessioned2015-05-26T13:22:44Z
dc.date.available2015-05-26T13:22:44Z
dc.date.issued2015
dc.identifier.citationMathematical Notes. 2015, vol. 97, issue 3-4, p. 588-597.cs
dc.identifier.issn0001-4346
dc.identifier.issn1573-8876
dc.identifier.urihttp://hdl.handle.net/10084/106794
dc.description.abstractThe paper investigates the Dirichlet problem with ø-Laplacian of the form $(\varphi (u'))' + f(t,u,u') = 0,u(0) = u(T) = 0.$ An existence principle which can be used for problems where f(t, x, y) may have singularities at t = 0, t = T and also at x = 0, y = 0, is proved here. As an application of this principle, new conditions that guarantee the solvability of the above problem are found.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMathematical Notescs
dc.relation.urihttp://dx.doi.org/10.1134/S0001434615030293cs
dc.titleLower and upper functions in a singular Dirichlet problem with o-Laplaciancs
dc.typearticlecs
dc.identifier.doi10.1134/S0001434615030293
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume97cs
dc.description.issue3-4cs
dc.description.lastpage597cs
dc.description.firstpage588cs
dc.identifier.wos000353566800029


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam