Zobrazit minimální záznam

dc.contributor.authorKučera, Radek
dc.contributor.authorMotyčková, Kristina
dc.contributor.authorMarkopoulos, Alexandros
dc.date.accessioned2015-06-19T07:00:44Z
dc.date.available2015-06-19T07:00:44Z
dc.date.issued2015
dc.identifier.citationComputational Optimization and Applications. 2015, vol. 61, issue 2, p. 437-461.cs
dc.identifier.issn0926-6003
dc.identifier.issn1573-2894
dc.identifier.urihttp://hdl.handle.net/10084/106811
dc.description.abstractThe goal is to analyze the semi-smooth Newton method applied to the solution of contact problems with friction in two space dimensions. The primal-dual algorithm for problems with the Tresca friction law is reformulated by eliminating primal variables. The resulting dual algorithm uses the conjugate gradient method for inexact solving of inner linear systems. The globally convergent algorithm based on computing a monotonously decreasing sequence is proposed and its R-linear convergence rate is proved. Numerical experiments illustrate the performance of different implementations including the Coulomb friction law.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesComputational Optimization and Applicationscs
dc.relation.urihttps://doi.org/10.1007/s10589-014-9716-2cs
dc.titleThe R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with frictioncs
dc.typearticlecs
dc.identifier.doi10.1007/s10589-014-9716-2
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume61cs
dc.description.issue2cs
dc.description.lastpage461cs
dc.description.firstpage437cs
dc.identifier.wos000354904500006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam