Zobrazit minimální záznam

dc.contributor.authorBrestovič, Tomáš
dc.contributor.authorJasminská, Natália
dc.contributor.authorPyszko, René
dc.contributor.authorLázár, Marián
dc.contributor.authorPuškár, Michal
dc.date.accessioned2015-07-20T07:23:40Z
dc.date.available2015-07-20T07:23:40Z
dc.date.issued2015
dc.identifier.citationMeasurement. 2015, vol. 72, p. 52-60.cs
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.urihttp://hdl.handle.net/10084/106820
dc.description.abstractThe presented paper describes the measurement of boundary conditions while cooling a metal hydride (MH) container with the La0.85Ce0.15Ni5 alloy. Results are subsequently used for 3D simulation of thermal field in the container during the process of hydrogen absorption. To solve the complicated flow of cooling medium among individual pressure receptacles, ANSYS CFX simulation tool is used and the finite volume method is applied. The same simulation tool is used to describe heat conduction in the metal alloy and the container. For the given construction of the container, uniform distribution of stored hydrogen can be expected among individual receptacles. For cooling the system, cooling radiator is used which is based on Peltier elements. The radiator also enables, in case of desorption, to warm the container. By measuring flows of working substances and the relevant temperatures, it is possible to obtain, by subsequent analysis of temperature flows, the resulting value of the internal heat source. This internal heat source creates a temperature gradient in the container, which impedes exact determination of Pressure Concentration Isotherm curves that should be ideally measured at constant temperature. In addition, measuring in combination with numerical calculations offers a closer look at the absorption process directly in the hydrogen manufacturing plant where, using the alternative energy source, hydrogen is produced and subsequently stored. The results enable to optimize the cooling process in MH hydrogen storage equipment of similar construction and indicate problems with meeting the requirements of the American Department of Energy (DOE).cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMeasurementcs
dc.relation.urihttp://dx.doi.org/10.1016/j.measurement.2015.04.027cs
dc.rightsCopyright © 2015 Elsevier Ltd. All rights reserved.cs
dc.titleMeasurement of boundary conditions for numerical solution of temperature fields of metal hydride containerscs
dc.typearticlecs
dc.identifier.doi10.1016/j.measurement.2015.04.027
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume72cs
dc.description.lastpage60cs
dc.description.firstpage52cs
dc.identifier.wos000356233200007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam