dc.contributor.author | Burkotová, Jana | |
dc.contributor.author | Rohleder, Martin | |
dc.contributor.author | Stryja, Jakub | |
dc.date.accessioned | 2015-07-22T07:57:27Z | |
dc.date.available | 2015-07-22T07:57:27Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Electronic Journal of Qualitative Theory of Differential Equations. 2015, no. 29, p. 1-25. | cs |
dc.identifier.issn | 1417-3875 | |
dc.identifier.uri | http://hdl.handle.net/10084/106842 | |
dc.description.abstract | The paper studies the singular initial value problem
(p(t)u
0
(t))0 + q(t)f(u(t)) = 0, t > 0, u(0) = u0 ∈ [L0, L] , u
0
(0) = 0.
Here, f ∈ C(R), f(L0) = f(0) = f(L) = 0, L0 < 0 < L and x f(x) > 0 for x ∈
(L0, 0) ∪ (0, L). Further, p, q ∈ C [ 0, ∞ ) are positive on (0, ∞) and p(0) = 0. The integral
R 1
0
ds
p(s) may be divergent which yields the time singularity at t = 0. The paper describes
a set of all solutions of the given problem. Existence results and properties of oscillatory
solutions and increasing solutions are derived. By means of these results, the existence
of an increasing solution with u(∞) = L (a homoclinic solution) playing an important
role in applications is proved. | cs |
dc.format.extent | 565329 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | Bolyai Institute, University of Szeged and the Hungarian Academy of Sciences | cs |
dc.relation.ispartofseries | Electronic Journal of Qualitative Theory of Differential Equations | cs |
dc.relation.uri | http://dx.doi.org/10.14232/ejqtde.2015.1.29 | cs |
dc.title | On the existence and properties of three types of solutions of singular IVPs | cs |
dc.type | article | cs |
dc.identifier.doi | 10.14232/ejqtde.2015.1.29 | |
dc.rights.access | openAccess | |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.issue | no. 29 | cs |
dc.description.lastpage | 25 | cs |
dc.description.firstpage | 1 | cs |
dc.identifier.wos | 000356785000001 | |