Zobrazit minimální záznam

dc.contributor.authorBurkotová, Jana
dc.contributor.authorRohleder, Martin
dc.contributor.authorStryja, Jakub
dc.date.accessioned2015-07-22T07:57:27Z
dc.date.available2015-07-22T07:57:27Z
dc.date.issued2015
dc.identifier.citationElectronic Journal of Qualitative Theory of Differential Equations. 2015, no. 29, p. 1-25.cs
dc.identifier.issn1417-3875
dc.identifier.urihttp://hdl.handle.net/10084/106842
dc.description.abstractThe paper studies the singular initial value problem (p(t)u 0 (t))0 + q(t)f(u(t)) = 0, t > 0, u(0) = u0 ∈ [L0, L] , u 0 (0) = 0. Here, f ∈ C(R), f(L0) = f(0) = f(L) = 0, L0 < 0 < L and x f(x) > 0 for x ∈ (L0, 0) ∪ (0, L). Further, p, q ∈ C [ 0, ∞ ) are positive on (0, ∞) and p(0) = 0. The integral R 1 0 ds p(s) may be divergent which yields the time singularity at t = 0. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with u(∞) = L (a homoclinic solution) playing an important role in applications is proved.cs
dc.format.extent565329 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherBolyai Institute, University of Szeged and the Hungarian Academy of Sciencescs
dc.relation.ispartofseriesElectronic Journal of Qualitative Theory of Differential Equationscs
dc.relation.urihttp://dx.doi.org/10.14232/ejqtde.2015.1.29cs
dc.titleOn the existence and properties of three types of solutions of singular IVPscs
dc.typearticlecs
dc.identifier.doi10.14232/ejqtde.2015.1.29
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.issueno. 29cs
dc.description.lastpage25cs
dc.description.firstpage1cs
dc.identifier.wos000356785000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam