Zobrazit minimální záznam

dc.contributor.authorToloo, Mehdi
dc.contributor.authorZandi, Ameneh
dc.contributor.authorEmrouznejad, Ali
dc.date.accessioned2015-08-04T08:09:06Z
dc.date.available2015-08-04T08:09:06Z
dc.date.issued2015
dc.identifier.citationThe Journal of Supercomputing. 2015, vol. 71, issue 7, p. 2397-2411.cs
dc.identifier.issn0920-8542
dc.identifier.issn1573-0484
dc.identifier.urihttp://hdl.handle.net/10084/110457
dc.description.abstractData envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesThe Journal of Supercomputingcs
dc.relation.urihttp://dx.doi.org/10.1007/s11227-015-1387-ycs
dc.titleEvaluation efficiency of large-scale data set with negative data: an artificial neural network approachcs
dc.typearticlecs
dc.identifier.doi10.1007/s11227-015-1387-y
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume71cs
dc.description.issue7cs
dc.description.lastpage2411cs
dc.description.firstpage2397cs
dc.identifier.wos000357345600004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam