dc.contributor.author | Golasowski, Martin | |
dc.contributor.author | Litschmannová, Martina | |
dc.contributor.author | Kuchař, Štěpán. | |
dc.contributor.author | Podhorányi, Michal | |
dc.contributor.author | Martinovič, Jan | |
dc.date.accessioned | 2015-08-11T06:30:13Z | |
dc.date.available | 2015-08-11T06:30:13Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Neural Network World. 2015, vol. 25, issue 3, p. 267-286. | cs |
dc.identifier.issn | 1210-0552 | |
dc.identifier.uri | http://hdl.handle.net/10084/110466 | |
dc.description.abstract | This article describes statistical evaluation of the computational model for precipitation forecast and proposes a method for uncertainty modelling of rainfall-runoff models in the Floreon+ system based on this evaluation. The Monte-Carlo simulation method is used for estimating possible river discharge and provides several confidence intervals that can support the decisions in operational disaster management. Experiments with other parameters of the model and their influence on final river discharge are also discussed. | cs |
dc.language.iso | en | cs |
dc.publisher | Czech Technical University in Prague in cooperation with VSB - Technical University of Ostrava | cs |
dc.relation.ispartofseries | Neural Network World | cs |
dc.relation.uri | http://dx.doi.org/10.14311/nnw.2015.25.014 | cs |
dc.rights | © CTU FTS 2015 | cs |
dc.title | Uncertainty modelling in Rainfall-Runoff simulations based on parallel Monte Carlo method | cs |
dc.type | article | cs |
dc.identifier.doi | 10.14311/NNW.2015.25.014 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 25 | cs |
dc.description.issue | 3 | cs |
dc.description.lastpage | 286 | cs |
dc.description.firstpage | 267 | cs |
dc.identifier.wos | 000358101800003 | |