Zobrazit minimální záznam

dc.contributor.authorGolasowski, Martin
dc.contributor.authorLitschmannová, Martina
dc.contributor.authorKuchař, Štěpán.
dc.contributor.authorPodhorányi, Michal
dc.contributor.authorMartinovič, Jan
dc.date.accessioned2015-08-11T06:30:13Z
dc.date.available2015-08-11T06:30:13Z
dc.date.issued2015
dc.identifier.citationNeural Network World. 2015, vol. 25, issue 3, p. 267-286.cs
dc.identifier.issn1210-0552
dc.identifier.urihttp://hdl.handle.net/10084/110466
dc.description.abstractThis article describes statistical evaluation of the computational model for precipitation forecast and proposes a method for uncertainty modelling of rainfall-runoff models in the Floreon+ system based on this evaluation. The Monte-Carlo simulation method is used for estimating possible river discharge and provides several confidence intervals that can support the decisions in operational disaster management. Experiments with other parameters of the model and their influence on final river discharge are also discussed.cs
dc.language.isoencs
dc.publisherCzech Technical University in Prague in cooperation with VSB - Technical University of Ostravacs
dc.relation.ispartofseriesNeural Network Worldcs
dc.relation.urihttp://dx.doi.org/10.14311/nnw.2015.25.014cs
dc.rights© CTU FTS 2015cs
dc.titleUncertainty modelling in Rainfall-Runoff simulations based on parallel Monte Carlo methodcs
dc.typearticlecs
dc.identifier.doi10.14311/NNW.2015.25.014
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume25cs
dc.description.issue3cs
dc.description.lastpage286cs
dc.description.firstpage267cs
dc.identifier.wos000358101800003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam