Zobrazit minimální záznam

dc.contributor.authorVožda, Michal
dc.contributor.authorJurek, František
dc.contributor.authorČerný, Martin
dc.date.accessioned2015-10-05T07:15:57Z
dc.date.available2015-10-05T07:15:57Z
dc.date.issued2015
dc.identifier.citationBiomedical Signal Processing and Control. 2015, vol. 22, p. 65-73.cs
dc.identifier.issn1746-8094
dc.identifier.issn1746-8108
dc.identifier.urihttp://hdl.handle.net/10084/110501
dc.description.abstractThis paper presents the application of a bio-inspired method for optimizing a lifelike vectorcardiographic (VCG) model. During the model estimation, a Particle Swarm Optimization (PSO) seeks the optimal combination of all parameters that maximize the correlation coefficient (r) and minimize the Mean Squared Error (MSE) between the synthetic and directly measured VCG leads. The proposed method was tested on 52 different VCG records annotated as a healthy control (HC) from PTB database. 156 models were individualized without any previous analysis of the waves of the original records. The PSO method automatically provides very realistic models with a correlation coefficient r > 0.995 and MSE < 0.0005 mV2 for 152 of the 156 VCG signals.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesBiomedical Signal Processing and Controlcs
dc.relation.urihttp://dx.doi.org/10.1016/j.bspc.2015.06.010cs
dc.rightsCopyright © 2015 Elsevier Ltd. All rights reserved.cs
dc.titleIndividualization of a vectorcardiographic model by a particle swarm optimizationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.bspc.2015.06.010
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.description.lastpage73cs
dc.description.firstpage65cs
dc.identifier.wos000360865100007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam