Zobrazit minimální záznam

dc.contributor.authorMarkopoulos, Alexandros
dc.contributor.authorHapla, Václav
dc.contributor.authorČermák, Martin
dc.contributor.authorFusek, Martin
dc.date.accessioned2015-10-27T13:30:52Z
dc.date.available2015-10-27T13:30:52Z
dc.date.issued2015
dc.identifier.citationApplied Mathematics and Computation. 2015, vol. 267, p. 698-710.cs
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.urihttp://hdl.handle.net/10084/110523
dc.description.abstractIn this paper we are presenting our PermonCube and FLLOP packages, and their use for massively parallel solution of elastoplasticity problems. PermonCube provides simple cubical meshes, partitioned in a non-overlapping manner. By means of finite element method it assembles all linear algebra objects required for solution of the physical problem. Two chosen nonlinear material models are presented, and a solving strategy based on the Newton’s method is briefly discussed. PermonCube uses our FLLOP library as a linear system solver. FLLOP is able to solve problems decomposed in a non-overlapping manner using domain decomposition methods of the FETI type. It extends PETSc (Portable, Extensible Toolkit for Scientific Computation). In the last section, large-scale numerical experiments with problem size up to 60 million of degrees of freedom are presented.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Mathematics and Computationcs
dc.relation.urihttp://dx.doi.org/10.1016/j.amc.2014.12.097cs
dc.rightsCopyright © 2015 Elsevier Inc. All rights reserved.cs
dc.titleMassively parallel solution of elastoplasticity problems with tens of millions of unknowns using PermonCube and FLLOP packagescs
dc.typearticlecs
dc.identifier.doi10.1016/j.amc.2014.12.097
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume267cs
dc.description.lastpage710cs
dc.description.firstpage698cs
dc.identifier.wos000361571100057


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam