Zobrazit minimální záznam

dc.contributor.authorPanda, Mrutyunjaya
dc.contributor.authorAbraham, Ajith
dc.contributor.authorPatra, Manas Ranjan
dc.date.accessioned2015-12-07T13:31:03Z
dc.date.available2015-12-07T13:31:03Z
dc.date.issued2015
dc.identifier.citationSecurity and Communication Networks. 2015, vol. 8, issue 16, p. 2741-2749.cs
dc.identifier.issn1939-0114
dc.identifier.issn1939-0122
dc.identifier.urihttp://hdl.handle.net/10084/110972
dc.description.abstractThis paper intends to develop some novel hybrid intelligent systems by combining naïve Bayes with decision trees (NBDT) and by combining non-nested generalized exemplar (NNge) and extended repeated incremental pruning (JRip) rule-based classifiers (NNJR) to construct a multiple classifier system to efficiently detect network intrusions. We also use ensemble design using AdaBoost to enhance the detection rate of the proposed hybrid system. Further, to have a better overall detection, we propose to combine farthest first traversal (FFT) clustering with classification techniques to obtain another two hybrid methods such as DTFF (DT + FFT) and FFNN (NNge + FFT). Finally, we use Bayesian belief network with Tabu search combined with NNge for better detection rate. Because most of the anomaly detection uses binary labels, that is, anomaly or normal, without discussing more details about the attack types, we perform two-class classification for our proposed methodologies in this paper. Substantial experiments are conducted using NSL-KDD dataset, which is a modified version of KDD99 intrusion dataset. Finally, empirical results with a detailed analysis for all the approaches show that hybrid classification with clustering DTFF provides the best anomaly detection rate among all others.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesSecurity and Communication Networkscs
dc.relation.urihttp://dx.doi.org/10.1002/sec.592cs
dc.rightsCopyright © 2012 John Wiley & Sons, Ltd.cs
dc.titleHybrid intelligent systems for detecting network intrusionscs
dc.typearticlecs
dc.identifier.doi10.1002/sec.592
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume8cs
dc.description.issue16cs
dc.description.lastpage2749cs
dc.description.firstpage2741cs
dc.identifier.wos000363086500013


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam