Zobrazit minimální záznam

dc.contributor.authorVondřejc, Jaroslav
dc.contributor.authorZeman, Jan
dc.contributor.authorMarek, Ivo
dc.date.accessioned2015-12-07T13:50:17Z
dc.date.available2015-12-07T13:50:17Z
dc.date.issued2015
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering. 2015, vol. 297, p. 258-291.cs
dc.identifier.issn0045-7825
dc.identifier.issn1879-2138
dc.identifier.urihttp://hdl.handle.net/10084/110975
dc.description.abstractGuaranteed upper–lower bounds on homogenized coefficients, arising from the periodic cell problem, are calculated in a scalar elliptic setting. Our approach builds on the recent variational reformulation of the Moulinec–Suquet (1994) Fast Fourier Transform (FFT) homogenization scheme by Vondřejc et al. (2014), which is based on the conforming Galerkin approximation with trigonometric polynomials. Upper–lower bounds are obtained by adjusting the primal–dual finite element framework developed independently by Dvořák (1993) and Wiȩckowski (1995) to the FFT-based Galerkin setting. We show that the discretization procedure differs for odd and non-odd number of grid points. Thanks to the Helmholtz decomposition inherited from the continuous formulation, the duality structure is fully preserved for the odd discretizations. In the latter case, a more complex primal–dual structure is observed due to presence of the trigonometric polynomials associated with the Nyquist frequencies. These theoretical findings are confirmed with numerical examples. To conclude, the main advantage of the FFT-based approach over conventional finite-element schemes is that the primal and the dual problems are treated on the same basis, and this property can be extended beyond the scalar elliptic setting.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputer Methods in Applied Mechanics and Engineeringcs
dc.relation.urihttp://dx.doi.org/10.1016/j.cma.2015.09.003cs
dc.rightsCopyright © 2015 Elsevier B.V. All rights reserved.cs
dc.titleGuaranteed upper–lower bounds on homogenized properties by FFT-based Galerkin methodcs
dc.typearticlecs
dc.identifier.doi10.1016/j.cma.2015.09.003
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume297cs
dc.description.lastpage291cs
dc.description.firstpage258cs
dc.identifier.wos000364061800012


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam