Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.date.accessioned2016-01-13T12:42:34Z
dc.date.available2016-01-13T12:42:34Z
dc.date.issued2016
dc.identifier.citationExpert Systems with Applications. 2016, vol. 44, p. 265-274.cs
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttp://hdl.handle.net/10084/110989
dc.description.abstractMeso-scale forecasts result from global numerical weather prediction models, which are based upon the differential equations for atmospheric dynamics that do not perfectly determine weather conditions near the ground. Statistical corrections can combine complex numerical models, based on the physics of the atmosphere to forecast the large-scale weather patterns, and regression in post-processing to clarify surface weather details according to local observations and climatological conditions. Neural networks trained with local relevant weather observations of fluctuant data relations in current conditions, entered by numerical model outcomes of the same data types, may revise its one target short-term prognosis (e.g. relative humidity or temperature) to stand for these methods. Polynomial neural networks can compose general partial differential equations, which allow model more complicated real system functions from discrete time-series observations than using standard soft-computing methods. This new neural network technique generates convergent series of substitution relative derivative terms, which combination sum can define and solve an unknown general partial differential equation, able to describe dynamic processes of the weather system in a local area, analogous to the differential equation systems of numerical models. The trained network model revises hourly-series of numerical prognosis of one target variable in sequence, applying the general differential equation solution of the correction multi-variable function to corresponding output variables of the 24-hour numerical forecast. The experimental results proved this polynomial network type can successfully revise some numerical weather prognoses after this manner.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesExpert Systems with Applicationscs
dc.relation.urihttp://dx.doi.org/10.1016/j.eswa.2015.08.057cs
dc.rightsCopyright © 2015 Elsevier Ltd. All rights reserved.cs
dc.titleNumerical weather prediction revisions using the locally trained differential polynomial networkcs
dc.typearticlecs
dc.identifier.doi10.1016/j.eswa.2015.08.057
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume44cs
dc.description.lastpage274cs
dc.description.firstpage265cs
dc.identifier.wos000365051500023


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam