Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.contributor.authorPedrycz, Witold
dc.date.accessioned2016-01-18T13:16:33Z
dc.date.available2016-01-18T13:16:33Z
dc.date.issued2016
dc.identifier.citationNeural Networks. 2016, vol. 73, p. 58-69.cs
dc.identifier.issn0893-6080
dc.identifier.issn1879-2782
dc.identifier.urihttp://hdl.handle.net/10084/111011
dc.description.abstractSum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeural Networkscs
dc.relation.urihttp://dx.doi.org/10.1016/j.neunet.2015.10.001cs
dc.rights.uriCopyright © 2015 Elsevier Ltd. All rights reserved.cs
dc.titleConstructing general partial differential equations using polynomial and neural networkscs
dc.typearticlecs
dc.identifier.doi10.1016/j.neunet.2015.10.001
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume73cs
dc.description.lastpage69cs
dc.description.firstpage58cs
dc.identifier.wos000366703600006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam