Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorVlach, Oldřich
dc.contributor.authorBrzobohatý, Tomáš
dc.date.accessioned2016-02-22T13:23:50Z
dc.date.available2016-02-22T13:23:50Z
dc.date.issued2015
dc.identifier.citationNumerical Linear Algebra with Applications. 2015, vol. 22, issue 6, p. 987-998.cs
dc.identifier.issn1070-5325
dc.identifier.issn1099-1506
dc.identifier.urihttp://hdl.handle.net/10084/111298
dc.description.abstractA cheap symmetric stiffness-based preconditioning of the Hessian of the dual problem arising from the application of the finite element tearing and interconnecting domain decomposition to the solution of variational inequalities with varying coefficients is proposed. The preconditioning preserves the structure of the inequality constraints and affects both the linear and nonlinear steps, so that it can improve the rate of convergence of the algorithms that exploit the conjugate gradient steps or the gradient projection steps. The bounds on the regular condition number of the Hessian of the preconditioned problem, which are independent of the coefficients, are given. The related stiffness scaling is also considered and analysed. The improvement is demonstrated by numerical experiments including the solution of a contact problem with variationally consistent discretization of the non-penetration conditions. The results are relevant also for linear problems.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesNumerical Linear Algebra with Applicationscs
dc.relation.urihttp://dx.doi.org/10.1002/nla.1994cs
dc.rightsCopyright © 2015 John Wiley & Sons, Ltd.cs
dc.titleReorthogonalization-based stiffness preconditioning in FETI algorithms with applications to variational inequalitiescs
dc.typearticlecs
dc.identifier.doi10.1002/nla.1994
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.description.issue6cs
dc.description.lastpage998cs
dc.description.firstpage987cs
dc.identifier.wos000368371500006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam