Zobrazit minimální záznam

dc.contributor.authorJanoušek, Jan
dc.contributor.authorGajdoš, Petr
dc.contributor.authorDohnálek, Pavel
dc.contributor.authorRadecký, Michal
dc.date.accessioned2016-03-30T11:47:19Z
dc.date.available2016-03-30T11:47:19Z
dc.date.issued2016
dc.identifier.citationSwarm and Evolutionary Computation. 2016, vol. 26, p. 50-55.cs
dc.identifier.issn2210-6502
dc.identifier.issn2210-6510
dc.identifier.urihttp://hdl.handle.net/10084/111414
dc.description.abstractIn this paper, we explore the possibilities of using the Random Forest algorithm in its regression version to predict the power output of a power plant based on hourly measured data. This is a task commonly leading to a optimization problem that is, in general, best solved using a bio-inspired technique. We extend the results already published on this topic and show that Regression Random Forest can be a better alternative to solve the problem. A comparison of the method with previously published results is included. In order to implement the algorithm in a way that is as efficient as possible, a massively parallel implementation using a Graphics Processing Unit was used and is also described.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesSwarm and Evolutionary Computationcs
dc.relation.urihttp://dx.doi.org/10.1016/j.swevo.2015.07.004cs
dc.rightsCopyright © 2015 Elsevier B.V. All rights reserved.cs
dc.subjectRandom Forestscs
dc.subjectRegressioncs
dc.subjectGPUcs
dc.subjectCUDAcs
dc.subjectParallel computingcs
dc.titleTowards power plant output modelling and optimization using parallel Regression Random Forestcs
dc.typearticlecs
dc.identifier.doi10.1016/j.swevo.2015.07.004
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume26cs
dc.description.lastpage55cs
dc.description.firstpage50cs
dc.identifier.wos000370099700005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam