Zobrazit minimální záznam

dc.contributor.authorAugustynek, Martin
dc.contributor.authorKorpas, David
dc.contributor.authorPenhaker, Marek
dc.contributor.authorCvek, Jakub
dc.contributor.authorBinarová, Andrea
dc.date.accessioned2016-04-06T12:05:50Z
dc.date.available2016-04-06T12:05:50Z
dc.date.issued2016
dc.identifier.citationBioMedical Engineering OnLine. 2016, vol. 15, art. no. 29.cs
dc.identifier.issn1475-925X
dc.identifier.urihttp://hdl.handle.net/10084/111442
dc.description.abstractBackground: Using of active cardiac medical devices increases steadily. In Europe, there were 183 implants of ICD and 944 implants of PM, 119 of biventricular ICD and 41 of biventricular PM, all per million inhabitants in 2014. Healthcare environments, including radiotherapy treatment rooms, are considered challenging for these implantable devices. Exposure to radiation may cause the device to experience premature elective replacement indicator, decreased pacing amplitude or pacing inhibition, inappropriate shocks or inhibition of tachyarrhythmia therapy and loss of device function. These impacts may be temporary or permanent. The aim of this study was to evaluate the influence of linear accelerator ionizing radiation dose of 10 Gy on the activity of the biventricular cardioverter-defibrillator in different position in radiation beam. Methods: Two identical wireless communication devices with all three leads were used for the measurement. Both systems were soused into solution saline and exposed in different position in the beam of linear accelerator per 10 Gy fractions. In comparison of usually used maximum recommended dose of 2 Gy, the radiation doses used in test were five times higher. Using the simultaneous monitoring wireless communication between device and its programmer allowed watching of the devices activities, noise occurrence or drop of biventricular pacing on the programmer screen, observed by local television loop camera. Results: At any device position in radiation beam, there were no influences of the device activity at dose of 10 Gy neither a significant increase of a solution saline temperature in any of the measured positions of CRT-D systems in linear accelerator. Conclusions: The results of the study indicated, that the recommendation dose for treating the patients with implantable devices are too conservative and the risk of device failure is not so high. The systems can easily withstand the dose fractions of tens Gy, which would allow current single-dose-procedure treatment in radiation therapy. Even though the process of the random alteration of device memory and electrical components by scatter particles not allowed to specify a safe dose during ionizing radiation, this study showed that the safe limit are above the today used dose fractions.cs
dc.format.extent779154 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherBioMed Centralcs
dc.relation.ispartofseriesBioMedical Engineering OnLinecs
dc.relation.urihttp://dx.doi.org/10.1186/s12938-016-0144-7cs
dc.rights© 2016 Augustynek et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.cs
dc.subjectImplantable cardioverter defibrillatorcs
dc.subjectRadiationcs
dc.subjectInterferencecs
dc.subjectCardiac resynchronization therapycs
dc.titleMonitoring of CRT-D devices during radiation therapy in vitrocs
dc.typearticlecs
dc.identifier.doi10.1186/s12938-016-0144-7
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.firstpageart. no. 29cs
dc.identifier.wos000371664100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam