Zobrazit minimální záznam

dc.contributor.authorBarak, Sasan
dc.contributor.authorSadegh, S. Saeedeh
dc.date.accessioned2016-07-21T08:34:21Z
dc.date.available2016-07-21T08:34:21Z
dc.date.issued2016
dc.identifier.citationJournal of Electrical Power & Energy Systems. 2016, vol. 82, p. 92-104.cs
dc.identifier.issn0142-0615
dc.identifier.issn1879-3517
dc.identifier.urihttp://hdl.handle.net/10084/111900
dc.description.abstractEnergy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Electrical Power & Energy Systemscs
dc.relation.urihttp://dx.doi.org/10.1016/j.ijepes.2016.03.012cs
dc.rights© 2016 Elsevier Ltd. All rights reserved.cs
dc.subjectenergy forecastingcs
dc.subjectARIMAcs
dc.subjectANFIScs
dc.subjectAdaBoostcs
dc.subjectensemble algorithmcs
dc.titleForecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithmcs
dc.typearticlecs
dc.identifier.doi10.1016/j.ijepes.2016.03.012
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume82cs
dc.description.lastpage104cs
dc.description.firstpage92cs
dc.identifier.wos000378449700011


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam