dc.contributor.author | Genčev, Marian | |
dc.date.accessioned | 2016-08-01T05:42:39Z | |
dc.date.available | 2016-08-01T05:42:39Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Archiv der Mathematik. 2016, vol. 107, issue 1, p. 9-22. | cs |
dc.identifier.issn | 0003-889X | |
dc.identifier.issn | 1420-8938 | |
dc.identifier.uri | http://hdl.handle.net/10084/111911 | |
dc.description.abstract | The main goal of this paper is the presentation of an elementary analytic technique which enables the evaluation of the so-called restricted sum formulas involving multiple zeta values with even arguments, i.e.
E(2c,K):=∑∑Kj=1cj=ccj∈Nζ(2c1,…,2cK),
where c and K are arbitrary positive integers with c≥K. Though the young and general theory of the multiple Riemann zeta function with a rich application potential may be rather complicated, our contribution makes the evaluation of the term E(2c,K) intelligible to a broad mathematical audience. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer | cs |
dc.relation.ispartofseries | Archiv der Mathematik | cs |
dc.relation.uri | http://dx.doi.org/10.1007/s00013-016-0912-4 | cs |
dc.rights | © Springer International Publishing 2016 | cs |
dc.subject | Riemann zeta function | cs |
dc.subject | restricted sum formulas | cs |
dc.subject | generating functions | cs |
dc.subject | infinite series and products | cs |
dc.title | On restricted sum formulas for multiple zeta values with even arguments | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1007/s00013-016-0912-4 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 107 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 22 | cs |
dc.description.firstpage | 9 | cs |
dc.identifier.wos | 000378871500002 | |