Show simple item record

dc.contributor.authorGenčev, Marian
dc.date.accessioned2016-08-01T05:42:39Z
dc.date.available2016-08-01T05:42:39Z
dc.date.issued2016
dc.identifier.citationArchiv der Mathematik. 2016, vol. 107, issue 1, p. 9-22.cs
dc.identifier.issn0003-889X
dc.identifier.issn1420-8938
dc.identifier.urihttp://hdl.handle.net/10084/111911
dc.description.abstractThe main goal of this paper is the presentation of an elementary analytic technique which enables the evaluation of the so-called restricted sum formulas involving multiple zeta values with even arguments, i.e. E(2c,K):=∑∑Kj=1cj=ccj∈Nζ(2c1,…,2cK), where c and K are arbitrary positive integers with c≥K. Though the young and general theory of the multiple Riemann zeta function with a rich application potential may be rather complicated, our contribution makes the evaluation of the term E(2c,K) intelligible to a broad mathematical audience.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesArchiv der Mathematikcs
dc.relation.urihttp://dx.doi.org/10.1007/s00013-016-0912-4cs
dc.rights© Springer International Publishing 2016cs
dc.subjectRiemann zeta functioncs
dc.subjectrestricted sum formulascs
dc.subjectgenerating functionscs
dc.subjectinfinite series and productscs
dc.titleOn restricted sum formulas for multiple zeta values with even argumentscs
dc.typearticlecs
dc.identifier.doi10.1007/s00013-016-0912-4
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume107cs
dc.description.issue1cs
dc.description.lastpage22cs
dc.description.firstpage9cs
dc.identifier.wos000378871500002


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record