Zobrazit minimální záznam

dc.contributor.advisor
dc.contributor.authorMesa, Andrea
dc.contributor.authorBasterrech, Sebastián
dc.contributor.authorGuerberoff, Gustavo
dc.contributor.authorAlvarez-Valin, Fernando
dc.date.accessioned2016-09-08T06:16:28Z
dc.date.available2016-09-08T06:16:28Z
dc.date.issued2016
dc.identifier.citationPattern Analysis and Applications. 2016, vol. 19, issue 3, p. 793-805.cs
dc.identifier.issn1433-7541
dc.identifier.issn1433-755X
dc.identifier.urihttp://hdl.handle.net/10084/112008
dc.description.abstractThe article presents an application of hidden Markov models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the variant surface glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host’s immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesPattern Analysis and Applicationscs
dc.relation.urihttp://dx.doi.org/10.1007/s10044-015-0508-9cs
dc.rights© Springer-Verlag London 2015cs
dc.subjecthidden Markov modelcs
dc.subjectclassificationcs
dc.subjectgene sequence classificationcs
dc.subjectTrypanosoma bruceics
dc.subjectvariant surface glycoproteincs
dc.titleHidden Markov models for gene sequence classificationcs
dc.typearticlecs
dc.identifier.doi10.1007/s10044-015-0508-9
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume19
dc.description.issue3
dc.description.lastpage805
dc.description.firstpage793
dc.identifier.wos000379266300015


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam