Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorPospíšil, Lukáš
dc.date.accessioned2016-10-04T12:00:51Z
dc.date.available2016-10-04T12:00:51Z
dc.date.issued2016
dc.identifier.citationAnnals of Operations Research. 2016, vol. 243, issue 1-2, p. 5-18.cs
dc.identifier.issn0254-5330
dc.identifier.issn1572-9338
dc.identifier.urihttp://hdl.handle.net/10084/112127
dc.description.abstractWe review our recent results in the development of optimal algorithms for the minimization of a strictly convex quadratic function subject to separable convex inequality constraints and/or linear equality constraints. A unique feature of our algorithms is the theoretically supported bound on the rate of convergence in terms of the bounds on the spectrum of the Hessian of the cost function, independent of representation of the constraints. When applied to the class of convex QP or QPQC problems with the spectrum in a given positive interval and a sparse Hessian matrix, the algorithms enjoy optimal complexity, i.e., they can find an approximate solution at the cost that is proportional to the number of unknowns. The algorithms do not assume representation of the linear equality constraints by full rank matrices. The efficiency of our algorithms is demonstrated by the evaluation of the projection of a point to the intersection of the unit cube and unit sphere with hyperplanes.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesAnnals of Operations Researchcs
dc.relation.urihttp://dx.doi.org/10.1007/s10479-013-1479-0cs
dc.rights© Springer Science+Business Media New York 2013cs
dc.subjectquadratic programmingcs
dc.subjectQPQCcs
dc.subjectseparable and equality constraintscs
dc.subjectaugmented Lagrangianscs
dc.subjectadaptive precision controlcs
dc.titleOptimal iterative QP and QPQC algorithmscs
dc.typearticlecs
dc.identifier.doi10.1007/s10479-013-1479-0
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume243cs
dc.description.issue1-2cs
dc.description.lastpage18cs
dc.description.firstpage5cs
dc.identifier.wos000382679800002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam