Zobrazit minimální záznam

dc.contributor.authorKrupka, Demeter
dc.contributor.authorMoreno, Giovanni
dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2016-10-06T08:40:22Z
dc.date.available2016-10-06T08:40:22Z
dc.date.issued2015
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2015, vol. 12, issue 5, art. no. 1550057.en
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.urihttp://hdl.handle.net/10084/112130
dc.description.abstractThe construction of a finite-order bicomplex whose morphisms are the horizontal and vertical derivatives of differential forms on finite-order jet prolongations of fibered manifolds over one-dimensional bases is presented. In particular, relationship between the morphisms and classes entering the variational sequence and the associated finite-order bicomplex is studied. Properties of classes entering the infinite-order bicomplex, induced from the finite-order variational sequences by means of an infinite canonical construction, are formulated as a remark, insisting further research.en
dc.language.isoen
dc.publisherWorld Scientific Publishing
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physics
dc.relation.urihttp://dx.doi.org/10.1142/S0219887815500577
dc.rightsAll material published by World Scientific Publishing and Imperial College Press is protected under International copyright and intellectual property laws.en
dc.subjectvariational sequenceen
dc.subjectvariational bicomplexen
dc.subjectLagrangianen
dc.subjectEuler–Lagrange expressionsen
dc.subjectHelmholtz expressionsen
dc.titleOn a bicomplex induced by the variational sequenceen
dc.typearticleen
dc.identifier.doi10.1142/S0219887815500577
dc.type.statusPeer-revieweden
dc.description.sourceWeb of Science
dc.description.volume12
dc.description.issue5
dc.description.firstpageart. no. 1550057en
dc.identifier.wos000355323900006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam