Zobrazit minimální záznam

dc.contributor.authorSwaczyna, Martin
dc.contributor.authorVolný, Petr
dc.date.accessioned2016-10-11T13:22:54Z
dc.date.available2016-10-11T13:22:54Z
dc.date.issued2013
dc.identifier.citationMiskolc Mathematical Notes. 2013, vol. 14, no. 2, p. 697-704.cs
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.urihttp://hdl.handle.net/10084/112148
dc.description.abstractThe paper deals with the geometric concept of mechanical systems of N particles. The systems are modelled on the Cartesian product R XN and its first jet prolongation J 1.R XN / D R TXN , where X is a 3-dimensional Riemannian manifold with a metric G. The kinetic energy T of the system of N-particles is interpreted by means of the weighted quadratic form NQ G associated with the weighted metric tensor G which arises from the original metric tensor G and the system of N particles m1; : : : ;mN . A requirement for the kinetic energy of the system of N particles to be constant is regarded as a nonholonomic, so-called isokinetic constraint and it is defined as a fibered submanifold T of the jet space R TXN endowed with a certain distribution C called canonical distribution, which has the meaning of generalized admissible displacements of the system of particles subject to the isokinetic constraint. Vector generators of the canonical distribution are found.cs
dc.language.isoencs
dc.publisherUniversity of Miskolccs
dc.relation.ispartofseriesMiskolc Mathematical Notescs
dc.relation.urihttp://mat76.mat.uni-miskolc.hu/mnotes/download_article/932cs
dc.rights© 2013 Miskolc University Presscs
dc.subjectmechanical systems of particlescs
dc.subjectkinetic energycs
dc.subjectmetric tensorcs
dc.subjectnonholonomic constraintscs
dc.subjectisokinetic constraintscs
dc.subjectisokinetic canonical distributioncs
dc.titleGeometric concept of isokinetic constraint for a system of particlescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue2cs
dc.description.lastpage704cs
dc.description.firstpage697cs
dc.identifier.wos000329498700033


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam