Show simple item record

dc.contributor.advisorKresta, Aleš
dc.contributor.authorWang, Danye
dc.date.accessioned2016-11-01T13:23:11Z
dc.date.available2016-11-01T13:23:11Z
dc.date.issued2016
dc.identifier.otherOSD002cs
dc.identifier.urihttp://hdl.handle.net/10084/113373
dc.descriptionImport 02/11/2016cs
dc.description.abstractStock portfolios are estimated to diversify the risk in the financial market. When we invest in portfolios of stocks, we need to find the optimal portfolios with high expected return and low risk. Therefore, it is necessary to know which strategy performs the best and choose correct strategy to invest. The goal of this thesis is to apply different portfolio optimization strategies and to compare their out-of-sample results. In this thesis, we apply different strategies to calculate the weights of stock portfolios, and apply back testing method to obtain the returns and wealth of portfolios, then compare the performance of different strategies by Sharpe ratio and Maximum drawdown.In compliance with the results of all strategies that used, we make the ranking of the performance for these strategies, and choose which is the best strategy to invest.en
dc.description.abstractStock portfolios are estimated to diversify the risk in the financial market. When we invest in portfolios of stocks, we need to find the optimal portfolios with high expected return and low risk. Therefore, it is necessary to know which strategy performs the best and choose correct strategy to invest. The goal of this thesis is to apply different portfolio optimization strategies and to compare their out-of-sample results. In this thesis, we apply different strategies to calculate the weights of stock portfolios, and apply back testing method to obtain the returns and wealth of portfolios, then compare the performance of different strategies by Sharpe ratio and Maximum drawdown.In compliance with the results of all strategies that used, we make the ranking of the performance for these strategies, and choose which is the best strategy to invest.cs
dc.format.extent3847721 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.subjectPortfolio optimizationen
dc.subjectMatlaben
dc.subjectNaive strategyen
dc.subjectMarkowitz modelen
dc.subjectMinimum variance strategyen
dc.subjectBayesian strategyen
dc.subjectportfolio with risk-free assetsen
dc.subjectrisk attitudeen
dc.subjectSharpe ratioen
dc.subjectMaximum drawdownen
dc.subjectPortfolio optimizationcs
dc.subjectMatlabcs
dc.subjectNaive strategycs
dc.subjectMarkowitz modelcs
dc.subjectMinimum variance strategycs
dc.subjectBayesian strategycs
dc.subjectportfolio with risk-free assetscs
dc.subjectrisk attitudecs
dc.subjectSharpe ratiocs
dc.subjectMaximum drawdowncs
dc.titleApplication of Matlab in Portfolio Optimizationen
dc.title.alternativeAplikace Matlabu v optimalizaci portfoliacs
dc.typeDiplomová prácecs
dc.contributor.refereeSeďa, Petr
dc.date.accepted2016-05-24
dc.thesis.degree-nameIng.
dc.thesis.degree-levelMagisterský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Ekonomická fakultacs
dc.description.department154 - Katedra financí
dc.thesis.degree-programHospodářská politika a správacs
dc.thesis.degree-branchFinancecs
dc.description.resultvýborněcs
dc.identifier.senderS2751cs
dc.identifier.thesisWAN0027_EKF_N6202_6202T010_2016
dc.rights.accessopenAccess


Files in this item

This item appears in the following Collection(s)

Show simple item record