Brain-computer interface based on generation of visual images
dc.contributor.author | Bobrov, Pavel Dmitrievitch | |
dc.contributor.author | Frolov, Alexander A. | |
dc.contributor.author | Cantor, Charles | |
dc.contributor.author | Fedulova, Irina | |
dc.contributor.author | Bakhnyan, Mikhail | |
dc.contributor.author | Zhavoronkov, Alexander | |
dc.date.accessioned | 2016-11-03T11:54:10Z | |
dc.date.available | 2016-11-03T11:54:10Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | PLoS ONE. 2011, vol. 6, issue 6, art. no. e20674. | cs |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10084/116337 | |
dc.description.abstract | This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. | cs |
dc.format.extent | 1422076 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | PLOS | cs |
dc.relation.ispartofseries | PLoS ONE | cs |
dc.relation.uri | http://dx.doi.org/10.1371/journal.pone.0020674 | cs |
dc.rights | © 2011 Bobrov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.title | Brain-computer interface based on generation of visual images | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1371/journal.pone.0020674 | |
dc.rights.access | openAccess | |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 6 | cs |
dc.description.issue | 6 | cs |
dc.description.firstpage | art. no. e20674 | cs |
dc.identifier.wos | 000291612600017 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2011 Bobrov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.