Zobrazit minimální záznam

dc.contributor.authorFrolov, Alexander A.
dc.contributor.authorHúsek, Dušan
dc.contributor.authorBobrov, Pavel Dmitrievitch
dc.date.accessioned2016-11-03T16:06:04Z
dc.date.available2016-11-03T16:06:04Z
dc.date.issued2011
dc.identifier.citationNeural Network World. 2011, vol. 21, issue 2, p. 101-115.cs
dc.identifier.issn1210-0552
dc.identifier.urihttp://hdl.handle.net/10084/116343
dc.description.abstractThis paper examines the performance of four classifiers for Brain Computer Interface (BCI) systems based on multichannel EEG recordings. The classifiers are designed to distinguish EEG patterns corresponding to performance of several mental tasks. The first one is the basic Bayesian classifier (BC) which exploits only interchannel covariance matrices corresponding to different mental tasks. The second classifier is also based on Bayesian approach but it takes into account EEG frequency structure by exploiting interchannel covariance matrices estimated separately for several frequency bands (Multiband Bayesian Classifier, MBBC). The third one is based on the method of Multiclass Common Spatial Patterns (MSCP) exploiting only interchannel covariance matrices as BC. The fourth one is based on the Common Tensor Discriminant Analysis (CTDA), which is a generalization of MCSP, taking EEG frequency structure into account. The MBBC and CTDA classifiers are shown to perform significantly better than the two other methods. Computational complexity of the four methods is estimated. It is shown that for all classifiers the increase in the classifying quality is always accompanied by a significant increase of computational complexity.cs
dc.language.isoencs
dc.publisherČVUT, Fakulta dopravní; VŠB-TU Ostrava, Fakulta elektrotechniky a informatikycs
dc.relation.ispartofseriesNeural Network Worldcs
dc.relation.urihttp://dx.doi.org/10.14311/nnw.2011.21.007cs
dc.subjectBrain computer interfacecs
dc.subjectmotor imagerycs
dc.subjectvisual imagerycs
dc.subjectEEG pattern classificationcs
dc.subjectBayesian classificationcs
dc.subjectcommon tensor discriminant analysiscs
dc.subjectcommon spatial patternscs
dc.titleComparison of four classification methods for brain-computer interfacecs
dc.typearticlecs
dc.identifier.doi10.14311/nnw.2011.21.007
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume21cs
dc.description.issue2cs
dc.description.lastpage115cs
dc.description.firstpage101cs
dc.identifier.wos000290838300001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam