dc.contributor.author | Lampart, Marek | |
dc.contributor.author | Oprocha, Piotr | |
dc.date.accessioned | 2016-11-11T09:29:32Z | |
dc.date.available | 2016-11-11T09:29:32Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Physica D: Nonlinear Phenomena. 2016, vol. 335, p. 45-53. | cs |
dc.identifier.issn | 0167-2789 | |
dc.identifier.issn | 1872-8022 | |
dc.identifier.uri | http://hdl.handle.net/10084/116367 | |
dc.description.abstract | We study the dynamics of Laplacian-type coupling induced by logistic family fμ(x) = μx(1 − x), where
μ ∈ [0, 4], on a periodic lattice, that is the dynamics of maps of the form
F (x, y) = ((1 − ε)fμ(x) + εfμ(y), (1 − ε)fμ(y) + εfμ(x))
where ε > 0 determines strength of coupling. Our main objective is to analyze the structure of attractors
in such systems and especially detect invariant regions with nontrivial dynamics outside the diagonal.
In analytical way, we detect some regions of parameters for which a horseshoe is present; and using
simulations global attractors and invariant sets are depicted. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Physica D: Nonlinear Phenomena | cs |
dc.relation.uri | http://dx.doi.org/10.1016/j.physd.2016.06.010 | cs |
dc.rights | © 2016 Elsevier B.V. All rights reserved. | cs |
dc.subject | coupled map lattices | cs |
dc.subject | logistic map | cs |
dc.subject | topological entropy | cs |
dc.subject | attractor | cs |
dc.title | Chaotic sub-dynamics in coupled logistic maps | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.physd.2016.06.010 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 335 | cs |
dc.description.lastpage | 53 | cs |
dc.description.firstpage | 45 | cs |
dc.identifier.wos | 000385603600005 | |