Zobrazit minimální záznam

dc.contributor.authorSysala, Stanislav
dc.contributor.authorČermák, Martin
dc.contributor.authorKoudelka, Tomáš
dc.contributor.authorKruis, Jaroslav
dc.contributor.authorZeman, Jan
dc.contributor.authorBlaheta, Radim
dc.date.accessioned2016-12-07T10:07:31Z
dc.date.available2016-12-07T10:07:31Z
dc.date.issued2016
dc.identifier.citationZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2016, vol. 96, issue 11, p. 1318-1338cs
dc.identifier.issn0044-2267
dc.identifier.issn1521-4001
dc.identifier.urihttp://hdl.handle.net/10084/116501
dc.description.abstractIn this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.cs
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofseriesZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanikcs
dc.relation.urihttp://dx.doi.org/10.1002/zamm.201500305cs
dc.rights© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimcs
dc.subjectelastoplasticitycs
dc.subjectnonsmooth yield surfacecs
dc.subjectmultivalued flow directioncs
dc.subjectimplicit return-mapping schemecs
dc.subjectsemismooth Newton methodcs
dc.subjectlimit analysiscs
dc.titleSubdifferential-based implicit return-mapping operators in computational plasticitycs
dc.typearticlecs
dc.identifier.doi10.1002/zamm.201500305
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume96cs
dc.description.issue11cs
dc.description.lastpage1338cs
dc.description.firstpage1318cs
dc.identifier.wos000387359600005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam