Zobrazit minimální záznam

dc.contributor.authorSukhanov, A. V.
dc.contributor.authorKovalev, S. M.
dc.contributor.authorStýskala, Vítězslav
dc.date.accessioned2016-12-07T10:27:35Z
dc.date.available2016-12-07T10:27:35Z
dc.date.issued2016
dc.identifier.citationBulletin of the Polish Academy of Sciences - Technical Sciences. 2016, vol. 64, issue 3, p. 625-632.cs
dc.identifier.issn0239-7528
dc.identifier.issn2300-1917
dc.identifier.urihttp://hdl.handle.net/10084/116502
dc.description.abstractNowadays, information control systems based on databases develop dynamically worldwide. These systems are extensively implemented into dispatching control systems for railways, intrusion detection systems for computer security and other domains centered on big data analysis. Here, one of the main tasks is the detection and prediction of temporal anomalies, which could be a signal leading to significant (and often critical) actionable information. This paper proposes the new anomaly prevent detection technique, which allows for determining the predictive temporal structures. Presented approach is based on a hybridization of stochastic Markov reward model by using fuzzy production rules, which allow to correct Markov information based on expert knowledge about the process dynamics as well as Markov’s intuition about the probable anomaly occurring. The paper provides experiments showing the efficacy of detection and prediction. In addition, the analogy between new framework and temporal-difference learning for sequence anomaly detection is graphically illustrated.cs
dc.format.extent1252507 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherde Gruytercs
dc.relation.ispartofseriesBulletin of the Polish Academy of Sciences - Technical Sciencescs
dc.relation.urihttp://dx.doi.org/10.1515/bpasts-2016-0070cs
dc.rights© 2016 Bulletin of the Polish Academy of Sciences. Technical Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cs
dc.subjectanomaly predictioncs
dc.subjectMarkov reward modelcs
dc.subjecthybrid fuzzy-stochastic rulescs
dc.subjecttemporal-difference learning for intrusion detectioncs
dc.titleFuzzy interpretation for temporal-difference learning in anomaly detection problemscs
dc.typearticlecs
dc.identifier.doi10.1515/bpasts-2016-0070
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume64cs
dc.description.issue3cs
dc.description.lastpage632cs
dc.description.firstpage625cs
dc.identifier.wos000387106900020


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2016 Bulletin of the Polish Academy of Sciences. Technical Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2016 Bulletin of the Polish Academy of Sciences. Technical Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.