Zobrazit minimální záznam

dc.contributor.authorKresta, Aleš
dc.contributor.authorTichý, Tomáš
dc.date.accessioned2017-01-24T08:24:14Z
dc.date.available2017-01-24T08:24:14Z
dc.date.issued2016
dc.identifier.citationComputers & Industrial Engineering. 2016, vol. 102, p. 331-339.cs
dc.identifier.issn0360-8352
dc.identifier.issn1879-0550
dc.identifier.urihttp://hdl.handle.net/10084/116808
dc.description.abstractPerformance evaluation of financial models for pricing and risk estimation and subsequent selection of models that should be regarded as efficient is one of the most important tasks of financial engineering. The decision-making units in financial institutions consider various criteria, the most important being the correctness of the obtained results. Notwithstanding, some complex decision-making tasks require model evaluation under various circumstances or with different input data. In most cases it happens that a model, which seems to be perfect under given settings, is outperformed by another model, when the conditions change, and that there is no model that dominates under all circumstances. In this paper we suggest to apply a Data envelopment analysis (DEA) as a tool for overall evaluation of market risk estimation models. Instead of suggesting new DEA models, we try to utilize its standard formulation in order to analyze its suitability within a new topic of financial decision-making. Specifically, we evaluate several market risk models combining selected copula functions and marginal distributions over a large set of probability levels.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Industrial Engineeringcs
dc.relation.urihttp://dx.doi.org/10.1016/j.cie.2016.07.017cs
dc.rights© 2016 Elsevier Ltd. All rights reserved.cs
dc.subjectefficient model selectioncs
dc.subjectrisk estimationcs
dc.subjectVaR violationscs
dc.subjectData envelopment analysiscs
dc.titleSelection of efficient market risk models: Backtesting results evaluation with DEA approachcs
dc.typearticlecs
dc.identifier.doi10.1016/j.cie.2016.07.017
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume102cs
dc.description.lastpage339cs
dc.description.firstpage331cs
dc.identifier.wos000390502800030


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam