Zobrazit minimální záznam

dc.contributor.authorŘíha, Lubomír
dc.contributor.authorLe Moigne, Jacqueline
dc.contributor.authorEl-Ghazawi, Tarek
dc.date.accessioned2017-02-13T11:26:30Z
dc.date.available2017-02-13T11:26:30Z
dc.date.issued2016
dc.identifier.citationIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016, vol. 9, issue 12, p. 5576-5587.cs
dc.identifier.issn1939-1404
dc.identifier.issn2151-1535
dc.identifier.urihttp://hdl.handle.net/10084/116844
dc.description.abstractThis paper evaluates the potential of embedded graphic processing units (GPU) in the Nvidia's Tegra K1 for onboard processing. The performance is compared to a general purpose multicore central processing unit (CPU), a full-fledge GPU accelerator, and an Intel Xeon Phi coprocessor, for two representative potential applications, wavelet spectral dimension reduction of hyperspectral imagery and automated cloud-cover assessment (ACCA). For these applications, Tegra K1 achieved 51% performance for the ACCA algorithm and 20% performance for the dimension reduction algorithm, as compared to the performance of the high-end eight-core server Intel Xeon CPU which has a 13.5 times higher power consumption. This paper also shows the potential of modern high-performance computing accelerators for algorithms such as the ones for which the paper presents an optimized parallel implementation. The two algorithms that were tested mostly contain spatially localized computations, and one can assume that all image processing algorithms containing localized computations would exhibit similar speed-ups when implemented on these parallel architectures.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingcs
dc.relation.urihttp://dx.doi.org/10.1109/JSTARS.2016.2558492cs
dc.rightsCopyright © 2016, IEEEcs
dc.subjectcloud detectioncs
dc.subjectdimension reductioncs
dc.subjectIntel Xeon Phics
dc.subjectKepler GPUcs
dc.subjectonboard processingcs
dc.subjectremote sensingcs
dc.subjectTegra K1cs
dc.titleOptimization of selected remote sensing algorithms for many-core architecturescs
dc.typearticlecs
dc.identifier.doi10.1109/JSTARS.2016.2558492
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue12cs
dc.description.lastpage5587cs
dc.description.firstpage5576cs
dc.identifier.wos000391468900003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam