Distribuovaný systém klasifikace útoků pro VoIP infrastrukturu využívající protokol SIP
Loading...
Files
Downloads
20
Date issued
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoká škola báňská - Technická univerzita Ostrava
Location
ÚK/Sklad diplomových prací
Signature
201700126
Abstract
The dissertation thesis focuses on machine learning methods for SIP attack classification. VoIP attacks are gathered with various types of detection nodes through a set of a honeypot applications. The data uncovered by different nodes collects centralized expert system Beekeeper. The system transforms attacks to the database and classifies them with machine learning algorithms. The thesis covers various supervised and unsupervised algorithms, but the best results and highest classification accuracy achieves MLP neural network. The neural network model is closely described and tested under varying condition and settings. The final neural network implementation contains the latest improvements for enhancing the MLP accuracy. The thesis familiarizes the reader with SIP protocol, VoIP attacks and the current state of the art methods for attack detection and mitigation. I propose the concept of a centralized expert system with distributed detection nodes. This concept also provides techniques for attack aggregation, data cleaning, node state monitoring, an analysis module, web interface and so on. The expert system Beekeeper is a modular system for attack classification and evaluation. Various detection nodes enable easy deployment in target network by the administrator, while the Beekeeper interprets the malicious traffic on the node. But the general nature and modularity of the expert system Beekeeper allow it to be used in other cases as well.
The reliability and accuracy of the neural network model are verified and compared with other machine learning available nowadays. The benefits of proposed model are highlighted.
Description
Import 14/02/2017
Subject(s)
attack classification, honeypot, machine learning, neural network, security, SIP, traffic analysis