Zobrazit minimální záznam

dc.contributor.authorGenčev, Marian
dc.date.accessioned2017-03-15T13:22:35Z
dc.date.available2017-03-15T13:22:35Z
dc.date.issued2017
dc.identifier.citationJournal of Mathematical Analysis and Applications. 2017, vol. 449, issue 1, p. 490-513.cs
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.urihttp://hdl.handle.net/10084/116939
dc.description.abstractThe aim of this paper is the study of a transformation dealing with the general K-fold infinite series of the form Sigma(n1 >=...>= nK >= 1) Pi(K)(j=1) a(nj), especially those, where a(n) = R(n) is a rational function satisfying certain simple conditions. These sums represent the direct generalization of the well-known multiple Riemann zeta -star function with repeated arguments zeta*({s}(K)) when a(n) = 1/n(s). Our result reduces Sigma Pi a(nj) to a special kind of one-fold infinite series. We apply the main theorem to the rational function R(n) = 1/((n + a)(s) + b(s)) in case of which the resulting K-fold sum is called the generalized multiple Hurwitz zeta -star function zeta*(a, b; {s}(K)). We construct an effective algorithm enabling the complete evaluation of zeta*(a, b; {2s}(K)) with a is an element of {0, -1/2}, b is an element of R \ {0}, (K, s) is an element of N-2, by means of a differential operator and present a simple 'Mathematica' code that allows their symbolic calculation. We also provide a new transformation of the ordinary multiple Riemann zeta-star values zeta*({2s}(K)) and zeta*({3}(K)) corresponding to a = b = 0.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applicationscs
dc.relation.urihttp://dx.doi.org/10.1016/j.jmaa.2016.12.023cs
dc.rights© 2016 Elsevier Inc. All rights reserved.cs
dc.subjectinfinite series transformationcs
dc.subjectmultiple Hurwitz zeta functioncs
dc.subjectdifferential operatorcs
dc.subjectconvergence accelerationcs
dc.titleTransformation of generalized multiple Riemann zeta type sums with repeated argumentscs
dc.typearticlecs
dc.identifier.doi10.1016/j.jmaa.2016.12.023
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume449cs
dc.description.issue1cs
dc.description.lastpage513cs
dc.description.firstpage490cs
dc.identifier.wos000393148100025


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam