dc.contributor.author | Genčev, Marian | |
dc.date.accessioned | 2017-03-15T13:22:35Z | |
dc.date.available | 2017-03-15T13:22:35Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Journal of Mathematical Analysis and Applications. 2017, vol. 449, issue 1, p. 490-513. | cs |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.uri | http://hdl.handle.net/10084/116939 | |
dc.description.abstract | The aim of this paper is the study of a transformation dealing with the general K-fold infinite series of the form
Sigma(n1 >=...>= nK >= 1) Pi(K)(j=1) a(nj),
especially those, where a(n) = R(n) is a rational function satisfying certain simple conditions. These sums represent the direct generalization of the well-known multiple Riemann zeta -star function with repeated arguments zeta*({s}(K)) when a(n) = 1/n(s). Our result reduces Sigma Pi a(nj) to a special kind of one-fold infinite series. We apply the main theorem to the rational function R(n) = 1/((n + a)(s) + b(s)) in case of which the resulting K-fold sum is called the generalized multiple Hurwitz zeta -star function zeta*(a, b; {s}(K)). We construct an effective algorithm enabling the complete evaluation of zeta*(a, b; {2s}(K)) with a is an element of {0, -1/2}, b is an element of R \ {0}, (K, s) is an element of N-2, by means of a differential operator and present a simple 'Mathematica' code that allows their symbolic calculation. We also provide a new transformation of the ordinary multiple Riemann zeta-star values zeta*({2s}(K)) and zeta*({3}(K)) corresponding to a = b = 0. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications | cs |
dc.relation.uri | http://dx.doi.org/10.1016/j.jmaa.2016.12.023 | cs |
dc.rights | © 2016 Elsevier Inc. All rights reserved. | cs |
dc.subject | infinite series transformation | cs |
dc.subject | multiple Hurwitz zeta function | cs |
dc.subject | differential operator | cs |
dc.subject | convergence acceleration | cs |
dc.title | Transformation of generalized multiple Riemann zeta type sums with repeated arguments | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.jmaa.2016.12.023 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 449 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 513 | cs |
dc.description.firstpage | 490 | cs |
dc.identifier.wos | 000393148100025 | |