Zobrazit minimální záznam

dc.contributor.authorRachůnek, Jiří
dc.contributor.authorŠalounová, Dana
dc.date.accessioned2017-03-15T13:46:22Z
dc.date.available2017-03-15T13:46:22Z
dc.date.issued2017
dc.identifier.citationFuzzy Sets and Systems. 2017, vol. 311, p. 70-85.cs
dc.identifier.issn0165-0114
dc.identifier.issn1872-6801
dc.identifier.urihttp://hdl.handle.net/10084/116940
dc.description.abstract(Bounded integral) residuated lattices (which need not be commutative) form a large class of algebras containing some classes of algebras behind many-valued and fuzzy logics. Congruences of such algebras are usually defined and investigated by means of their normal filters. In the paper we introduce and investigate ideals of residuated lattices. We show that one can define, in some cases, congruences also using ideals and that the corresponding quotient residuated lattices are involutive.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesFuzzy Sets and Systemscs
dc.relation.urihttp://dx.doi.org/10.1016/j.fss.2016.03.004cs
dc.rights© 2016 Elsevier B.V. All rights reserved.cs
dc.subjectresiduated latticecs
dc.subjectinvolutive residuated latticecs
dc.subjectpseudo BL-algebracs
dc.subjectfiltercs
dc.subjectnormal filtercs
dc.subjectidealcs
dc.titleIdeals and involutive filters in generalizations of fuzzy structurescs
dc.typearticlecs
dc.identifier.doi10.1016/j.fss.2016.03.004
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume311cs
dc.description.lastpage85cs
dc.description.firstpage70cs
dc.identifier.wos000393242000005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam