Zobrazit minimální záznam

dc.contributor.authorOjha, Varun Kumar
dc.contributor.authorAbraham, Ajith
dc.contributor.authorSnášel, Václav
dc.date.accessioned2017-04-21T10:18:15Z
dc.date.available2017-04-21T10:18:15Z
dc.date.issued2017
dc.identifier.citationApplied Soft Computing. 2017, vol. 52, p. 909-924.cs
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.urihttp://hdl.handle.net/10084/117018
dc.description.abstractMachine learning algorithms are inherently multiobjective in nature, where approximation error minimization and models complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Soft Computingcs
dc.relation.urihttp://doi.org/10.1016/j.asoc.2016.09.035cs
dc.rights© 2016 Elsevier B.V. All rights reserved.cs
dc.subjectPareto-based multiobjectivescs
dc.subjectflexible neural treecs
dc.subjectensemblecs
dc.subjectapproximationcs
dc.subjectfeature selectioncs
dc.titleEnsemble of heterogeneous flexible neural trees using multiobjective genetic programmingcs
dc.typearticlecs
dc.identifier.doi10.1016/j.asoc.2016.09.035
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume52cs
dc.description.lastpage924cs
dc.description.firstpage909cs
dc.identifier.wos000395896500068


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam