Efficient algorithms for mining colossal patterns in high dimensional databases
dc.contributor.author | Nguyen, Thanh-Long | |
dc.contributor.author | Vo, Bay | |
dc.contributor.author | Snášel, Václav | |
dc.date.accessioned | 2017-04-24T09:01:35Z | |
dc.date.available | 2017-04-24T09:01:35Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Knowledge-Based Systems. 2017, vol. 122, p. 75-89. | cs |
dc.identifier.issn | 0950-7051 | |
dc.identifier.issn | 1872-7409 | |
dc.identifier.uri | http://hdl.handle.net/10084/117023 | |
dc.description.abstract | Mining association rules plays an important role in decision support systems. To mine strong association rules, it is necessary to mine frequent patterns. There are many algorithms that have been developed to efficiently mine frequent patterns, such as Apriori, Eclat, FP-Growth, PrePost, and FIN. However, these are only efficient with a small number of items in the database. When a database has a large number of items (from thousands to hundreds of thousands) but the number of transactions is small, these algorithms cannot run when the minimum support threshold is also small (because the search space is huge). This thus causes the problem of mining colossal patterns in high dimensional databases. In 2012, Sohrabi and Barforoush proposed the BVBUC algorithm for training colossal patterns based on a bottom up scheme. However, this needs more time to check subsets and supersets, because it generates a lot of candidates and consumes more memory to store these. In this paper we propose new, efficient algorithms for mining colossal patterns. Firstly, the CP (Colossal Pattern)-tree is designed. Next, we develop two theorems to rapidly compute patterns of nodes and prune nodes without the loss of information in colossal patterns. Based on the CP-tree and these theorems, an algorithm (named CP-Miner) is proposed to solve the problem of mining colossal patterns. A Sorting strategy for efficiently mining colossal patterns is thus developed. This strategy helps to reduce the number of significant candidates and the time needed to check subsets and supersets. The PCP-Miner algorithm, which Uses this strategy, is then proposed, and we also conduct experiments to show the efficiency of these algorithms. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Knowledge-Based Systems | cs |
dc.relation.uri | http://doi.org/10.1016/j.knosys.2017.01.034 | cs |
dc.rights | © 2017 Elsevier B.V. All rights reserved. | cs |
dc.subject | bottom up | cs |
dc.subject | colossal patterns | cs |
dc.subject | data mining | cs |
dc.subject | high dimensional databases | cs |
dc.title | Efficient algorithms for mining colossal patterns in high dimensional databases | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.knosys.2017.01.034 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 122 | cs |
dc.description.lastpage | 89 | cs |
dc.description.firstpage | 75 | cs |
dc.identifier.wos | 000395604800007 |
Soubory tohoto záznamu
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost.