Show simple item record

dc.contributor.advisorBouchala, Jiří
dc.contributor.authorZapletal, Jan
dc.date.accessioned2017-05-12T10:21:03Z
dc.date.available2017-05-12T10:21:03Z
dc.date.issued2017
dc.identifier.otherOSD002
dc.identifier.urihttp://hdl.handle.net/10084/117052
dc.description.abstractThe rapid development of the boundary element method (BEM) during the last decades has allowed it to be considered in the shape optimization context, where it is necessary to solve a given state problem many times. We present a BEM-based shape optimization concept, which can also be used for the solution of inverse problems including the presented Bernoulli free-surface problem. To separate the computational and optimization meshes we use the hierarchy of control meshes constructed by means of subdivision surfaces known from the computer graphics. In the thesis we also address the important topic of efficient implementation of BEM on modern hardware architectures and accelerators. The theory is supported by a series of numerical experiments validating the proposed approach.en
dc.description.abstractThe rapid development of the boundary element method (BEM) during the last decades has allowed it to be considered in the shape optimization context, where it is necessary to solve a given state problem many times. We present a BEM-based shape optimization concept, which can also be used for the solution of inverse problems including the presented Bernoulli free-surface problem. To separate the computational and optimization meshes we use the hierarchy of control meshes constructed by means of subdivision surfaces known from the computer graphics. In the thesis we also address the important topic of efficient implementation of BEM on modern hardware architectures and accelerators. The theory is supported by a series of numerical experiments validating the proposed approach.cs
dc.format131 s. : il.cs
dc.format.extent10875433 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.subjectboundary integral equationsen
dc.subjectboundary element methoden
dc.subjectBernoulli problemen
dc.subjectshape optimizationen
dc.subjectsubdivision surfacesen
dc.subjectvectorizationen
dc.subjectmanycore and multicore accelerationen
dc.subjectboundary integral equationscs
dc.subjectboundary element methodcs
dc.subjectBernoulli problemcs
dc.subjectshape optimizationcs
dc.subjectsubdivision surfacescs
dc.subjectvectorizationcs
dc.subjectmanycore and multicore accelerationcs
dc.titleBoundary Element Method for 3D Shape Optimization Problemsen
dc.title.alternativeŘešení okrajových úloh pomocí BEMcs
dc.typeDisertační prácecs
dc.identifier.signature201700165cs
dc.identifier.locationÚK/Sklad diplomových pracícs
dc.contributor.refereeVejchodský, Tomášcs
dc.contributor.refereeLukáš, Daliborcs
dc.contributor.refereeSteinbach, Olafcs
dc.date.accepted2017-04-27
dc.thesis.degree-namePh.D.
dc.thesis.degree-levelDoktorský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Fakulta elektrotechniky a informatikycs
dc.description.department470 - Katedra aplikované matematiky
dc.thesis.degree-programInformatika, komunikační technologie a aplikovaná matematikacs
dc.thesis.degree-branchVýpočetní a aplikovaná matematikacs
dc.description.resultvyhovělcs
dc.identifier.senderS2724cs
dc.identifier.thesisZAP150_FEI_P1807_1103V036_2017
dc.rights.accessopenAccess


Files in this item

This item appears in the following Collection(s)

Show simple item record