Zobrazit minimální záznam

dc.contributor.authorZhang, S. H.
dc.contributor.authorBeyerlein, Irene J.
dc.contributor.authorLegut, Dominik
dc.contributor.authorFu, Z. H.
dc.contributor.authorZhang, Z.
dc.contributor.authorShang, S. L.
dc.contributor.authorLiu, Z. K.
dc.contributor.authorGermann, Timothy Clark
dc.contributor.authorZhang, R. F.
dc.date.accessioned2017-07-12T08:39:43Z
dc.date.available2017-07-12T08:39:43Z
dc.date.issued2017
dc.identifier.citationPhysical Review B. 2017, vol. 95, issue 22, art. no. 224106.cs
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/10084/117169
dc.description.abstractTaking pure Mg, Mg-Al, and Mg-Zn as prototypes, the effects of strain on the stacking fault energies (SFEs), dislocation core structure, and Peierls stress were systematically investigated by means of density functional theory and the semidiscrete variational Peierls-Nabarro model. Our results suggest that volumetric strain may significantly influence the values of SFEs of both pure Mg and its alloys, which will eventually modify the dislocation core structure, Peierls stress, and preferred slip system, in agreement with recent experimental results. The so-called "strain factor" that was previously proposed for the solute strengthening could be justified as a major contribution to the strain effect on SFEs. Based on multivariate regression analysis, we proposed universal exponential relationships between the dislocation core structure, the Peierls stress, and the stable or unstable SFEs. Electronic structure calculations suggest that the variations of these critical parameters controlling strength and ductility under strain can be attributed to the strain-induced electronic polarization and redistribution of valence charge density at hollow sites. These findings provide a fundamental basis for tuning the strain effect to design novel Mg alloys with both high strength and ductility.cs
dc.language.isoencs
dc.publisherAmerican Physical Societycs
dc.relation.ispartofseriesPhysical Review Bcs
dc.relation.urihttps://doi.org/10.1103/PhysRevB.95.224106cs
dc.rights© 2017 American Physical Societycs
dc.titleFirst-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloyscs
dc.typearticlecs
dc.identifier.doi10.1103/PhysRevB.95.224106
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume95cs
dc.description.issue22cs
dc.description.firstpageart. no. 224106cs
dc.identifier.wos000404016500001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam