Zobrazit minimální záznam

dc.contributor.authorVenskus, Julius
dc.contributor.authorTreigys, Povilas
dc.contributor.authorBernataviciene, Jolita
dc.contributor.authorMedvedev, Viktor
dc.contributor.authorVozňák, Miroslav
dc.contributor.authorKurmis, Mindaugas
dc.contributor.authorBulbenkiene, Violeta
dc.date.accessioned2017-08-09T11:40:02Z
dc.date.available2017-08-09T11:40:02Z
dc.date.issued2017
dc.identifier.citationInformatica. 2017, vol. 28, issue 2, p. 359-374.cs
dc.identifier.issn0868-4952
dc.identifier.issn1822-8844
dc.identifier.urihttp://hdl.handle.net/10084/117209
dc.description.abstractIn recent years, the growth of marine traffic in ports and their surroundings raise the traffic and security control problems and increase the workload for traffic control operators. The automated identification system of vessel movement generates huge amounts of data that need to be analysed to make the proper decision. Thus, rapid self-learning algorithms for the decision support system have to be developed to detect the abnormal vessel movement in intense marine traffic areas. The paper presents a new self-learning adaptive classification algorithm based on the combination of a self-organizing map (SOM) and a virtual pheromone for abnormal vessel movement detection in maritime traffic. To improve the quality of classification results, Mexican hat neighbourhood function has been used as a SOM neighbourhood function. To estimate the classification results of the proposed algorithm, an experimental investigation has been performed using the real data set, provided by the Klaipeda seaport and that obtained from the automated identification system. The results of the research show that the proposed algorithm provides rapid self-learning characteristics and classification.cs
dc.language.isoencs
dc.publisherVilniaus universitetas, Matematikos ir informatikos institutascs
dc.relation.ispartofseriesInformaticacs
dc.relation.urihttps://www.mii.lt/informatica/pdf/INFO1145.pdfcs
dc.relation.urihttp://dx.doi.org/10.15388/Informatica.2017.133
dc.rights© 2017 Vilnius Universitycs
dc.subjectmarine trafficcs
dc.subjectabnormal vessel traffic detectioncs
dc.subjectvirtual pheromonecs
dc.subjectself-organizing mapcs
dc.subjectneural networkcs
dc.titleIntegration of a self-organizing map and a virtual pheromone for real time abnormal movement detection in marine trafficcs
dc.typearticlecs
dc.identifier.doi10.15388/Informatica.2017.133
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume28cs
dc.description.issue2cs
dc.description.lastpage374cs
dc.description.firstpage359cs
dc.identifier.wos000405641900007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam