Zobrazit minimální záznam

dc.contributor.authorZhang, R. F.
dc.contributor.authorKong, Xiangfei
dc.contributor.authorWang, H. T.
dc.contributor.authorZhang, S. H.
dc.contributor.authorLegut, Dominik
dc.contributor.authorSheng, S. H.
dc.contributor.authorSrinivasan, S.
dc.contributor.authorRajan, K.
dc.contributor.authorGermann, Timothy Clark
dc.date.accessioned2017-09-21T05:26:18Z
dc.date.available2017-09-21T05:26:18Z
dc.date.issued2017
dc.identifier.citationScientific Reports. 2017, vol. 7, art. no. 9577.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/120221
dc.description.abstractThe classification of miscible and immiscible systems of binary alloys plays a critical role in the design of multicomponent alloys. By mining data from hundreds of experimental phase diagrams, and thousands of thermodynamic data sets from experiments and high-throughput first-principles (HTFP) calculations, we have obtained a comprehensive classification of alloying behavior for 813 binary alloy systems consisting of transition and lanthanide metals. Among several physics-based descriptors, the slightly modified Pettifor chemical scale provides a unique two-dimensional map that divides the miscible and immiscible systems into distinctly clustered regions. Based on an artificial neural network algorithm and elemental similarity, the miscibility of the unknown systems is further predicted and a complete miscibility map is thus obtained. Impressively, the classification by the miscibility map yields a robust validation on the capability of the well-known Miedema's theory (95% agreement) and shows good agreement with the HTFP method (90% agreement). Our results demonstrate that a state-of-the-art physics-guided data mining can provide an efficient pathway for knowledge discovery in the next generation of materials design.cs
dc.format.extent9974588 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherNature Publishing Groupcs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-017-09704-1cs
dc.rights© The Author(s) 2017cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleAn informatics guided classification of miscible and immiscible binary alloy systemscs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-017-09704-1
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume7cs
dc.description.firstpageart. no. 9577cs
dc.identifier.wos000408532600013


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© The Author(s) 2017
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © The Author(s) 2017