dc.contributor.author | Genčev, Marian | |
dc.date.accessioned | 2017-09-22T11:36:34Z | |
dc.date.available | 2017-09-22T11:36:34Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Monatshefte für Mathematik. 2017, vol. 184, issue 2, p. 217-243. | cs |
dc.identifier.issn | 0026-9255 | |
dc.identifier.issn | 1436-5081 | |
dc.identifier.uri | http://hdl.handle.net/10084/120230 | |
dc.description.abstract | The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
Sigma (N >= n1 >= ... >= nK >= 1) 1/b(nK) . Pi (K-1)(J=1) 1/a(nj),
where (K,N) is an element of N-2 and {a(n)}(n=1)(infinity), {b(n)}(n=1)(infinity) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula zeta(star)({2}(K), 1) = 2 zeta(2K + 1), K is an element of N. As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer | cs |
dc.relation.ispartofseries | Monatshefte für Mathematik | cs |
dc.relation.uri | https://doi.org/10.1007/s00605-016-0984-z | cs |
dc.rights | © Springer-Verlag Wien 2016 | cs |
dc.subject | multiple zeta-star values | cs |
dc.subject | parametric infinite series | cs |
dc.subject | sum formula | cs |
dc.title | Generalization of the non-local derangement identity and applications to multiple zeta-type series | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1007/s00605-016-0984-z | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 184 | cs |
dc.description.issue | 2 | cs |
dc.description.lastpage | 243 | cs |
dc.description.firstpage | 217 | cs |
dc.identifier.wos | 000410405200004 | |