Show simple item record

dc.contributor.authorGenčev, Marian
dc.date.accessioned2017-09-22T11:36:34Z
dc.date.available2017-09-22T11:36:34Z
dc.date.issued2017
dc.identifier.citationMonatshefte für Mathematik. 2017, vol. 184, issue 2, p. 217-243.cs
dc.identifier.issn0026-9255
dc.identifier.issn1436-5081
dc.identifier.urihttp://hdl.handle.net/10084/120230
dc.description.abstractThe goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form Sigma (N >= n1 >= ... >= nK >= 1) 1/b(nK) . Pi (K-1)(J=1) 1/a(nj), where (K,N) is an element of N-2 and {a(n)}(n=1)(infinity), {b(n)}(n=1)(infinity) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula zeta(star)({2}(K), 1) = 2 zeta(2K + 1), K is an element of N. As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesMonatshefte für Mathematikcs
dc.relation.urihttps://doi.org/10.1007/s00605-016-0984-zcs
dc.rights© Springer-Verlag Wien 2016cs
dc.subjectmultiple zeta-star valuescs
dc.subjectparametric infinite seriescs
dc.subjectsum formulacs
dc.titleGeneralization of the non-local derangement identity and applications to multiple zeta-type seriescs
dc.typearticlecs
dc.identifier.doi10.1007/s00605-016-0984-z
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume184cs
dc.description.issue2cs
dc.description.lastpage243cs
dc.description.firstpage217cs
dc.identifier.wos000410405200004


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record