Zobrazit minimální záznam

dc.contributor.authorOrčík, Lukáš
dc.contributor.authorVozňák, Miroslav
dc.contributor.authorRozhon, Jan
dc.contributor.authorŘezáč, Filip
dc.contributor.authorŠlachta, Jiří
dc.contributor.authorToral-Cruz, Homero
dc.contributor.authorLin, Jerry Chun-Wei
dc.date.accessioned2017-10-31T10:18:24Z
dc.date.available2017-10-31T10:18:24Z
dc.date.issued2017
dc.identifier.citationWireless Personal Communications. 2017, vol. 96, issue 4, p. 5375-5389.cs
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.urihttp://hdl.handle.net/10084/121000
dc.description.abstractThe paper presents a system for monitoring and assessment the speech quality in the IP telephony infrastructures using modular probes. The probes are placed at key nodes in the network where aggregating packet loss data. The system dynamically measures speech quality and results are collected on a central server. For data analysis we applied four-state Markov model for modeling the impact of network impairments on speech quality, afterwards, the resilient back propagation (Rprop) algorithm was used to train a neural network. Information about the speech quality are displayed in the form of automatically generated graphs and tables. The proposed solution has been tested with selected codecs and further generalizes the already presented concepts of the speech quality estimation in the IP environment.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesWireless Personal Communicationscs
dc.relation.urihttps://doi.org/10.1007/s11277-016-3746-2cs
dc.rights© Springer Science+Business Media New York 2016cs
dc.subjectMarkov modelscs
dc.subjectneural networkscs
dc.subjectspeech qualitycs
dc.subjectnetwork probescs
dc.titlePrediction of speech quality based on resilient backpropagation artificial neural networkcs
dc.typearticlecs
dc.identifier.doi10.1007/s11277-016-3746-2
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume96cs
dc.description.issue4cs
dc.description.lastpage5389cs
dc.description.firstpage5375cs
dc.identifier.wos000411881300025


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam