dc.contributor.author | Haslinger, Jaroslav | |
dc.contributor.author | Janovský, Vladimír | |
dc.contributor.author | Kučera, Radek | |
dc.contributor.author | Motyčková, Kristina | |
dc.date.accessioned | 2017-12-06T12:37:28Z | |
dc.date.available | 2017-12-06T12:37:28Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Mathematics and Computers in Simulation. 2018, vol. 145, p. 62-78. | cs |
dc.identifier.issn | 0378-4754 | |
dc.identifier.issn | 1872-7166 | |
dc.identifier.uri | http://hdl.handle.net/10084/122306 | |
dc.description.abstract | The paper presents a new variant of a nonsmooth continuation algorithm by means of which one can follow branches of solutions to 2D contact problems with Coulomb friction which are parameterized by the coefficient of friction. The algorithm is based on the predictor-corrector technique and uses the active set strategy implementation of the semismooth Newton method. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Mathematics and Computers in Simulation | cs |
dc.relation.uri | https://doi.org/10.1016/j.matcom.2017.08.001 | cs |
dc.rights | © 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. | cs |
dc.subject | contact problem | cs |
dc.subject | Coulomb friction | cs |
dc.subject | semismooth Newton method | cs |
dc.subject | nonsmooth continuation | cs |
dc.subject | multiple solutions | cs |
dc.title | Nonsmooth continuation of parameter dependent static contact problems with Coulomb friction | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.matcom.2017.08.001 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 145 | cs |
dc.description.lastpage | 78 | cs |
dc.description.firstpage | 62 | cs |
dc.identifier.wos | 000416128600006 | |