dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2018-01-08T12:09:02Z | |
dc.date.available | 2018-01-08T12:09:02Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Fuzzy Sets and Systems. 2018, vol. 333, p. 11-16. | cs |
dc.identifier.issn | 0165-0114 | |
dc.identifier.issn | 1872-6801 | |
dc.identifier.uri | http://hdl.handle.net/10084/122733 | |
dc.description.abstract | GMV-algebras are a non-commutative generalization of MV-algebras and are an algebraic semantics of the non-commutative Lukasiewicz infinite valued propositional fuzzy logic. In the paper, derivations on GMV-algebras (which are formally introduced in the same manner as derivations on rings) are investigated. A complete description of all derivations on any GMV-algebra is given. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Fuzzy Sets and Systems | cs |
dc.relation.uri | https://doi.org/10.1016/j.fss.2017.01.013 | cs |
dc.rights | © 2017 Elsevier B.V. All rights reserved. | cs |
dc.subject | MV-algebra | cs |
dc.subject | GMV-algebra | cs |
dc.subject | derivation on GMV-algebra | cs |
dc.subject | additive mapping | cs |
dc.subject | Boolean element | cs |
dc.title | Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.fss.2017.01.013 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 333 | cs |
dc.description.lastpage | 16 | cs |
dc.description.firstpage | 11 | cs |
dc.identifier.wos | 000418598800002 | |