Zobrazit minimální záznam

dc.contributor.authorSysala, Stanislav
dc.contributor.authorČermák, Martin
dc.contributor.authorLigurský, Tomáš
dc.date.accessioned2018-01-09T11:57:51Z
dc.date.available2018-01-09T11:57:51Z
dc.date.issued2017
dc.identifier.citationZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2017, vol. 97, issue 12, p. 1502-1523.cs
dc.identifier.issn0044-2267
dc.identifier.issn1521-4001
dc.identifier.urihttp://hdl.handle.net/10084/122771
dc.description.abstractThe paper is devoted to constitutive solution, limit load analysis and Newton-like methods in elastoplastic problems containing the Mohr-Coulomb yield criterion. Within the constitutive problem, we introduce a self-contained derivation of the implicit return-mapping solution scheme using a recent subdifferential-based treatment. Unlike conventional techniques based on Koiter's rules, the presented scheme a priori detects a position of the unknown stress tensor on the yield surface even if the constitutive solution cannot be found in a closed form. This eliminates blind guesswork from the scheme and enables to analyze properties of the constitutive operator. It also simplifies the construction of the consistent tangent operator, which is important for the semismooth Newton method when applied to the incremental boundary-value elastoplastic problem. The incremental problem in Mohr-Coulomb plasticity is combined with limit load analysis. Beside a conventional direct method of incremental limit analysis, a recent indirect one is introduced and its advantages are described. The paper contains 2D and 3D numerical experiments on slope stability with publicly available Matlab implementations.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanikcs
dc.relation.urihttp://dx.doi.org/10.1002/zamm.201600215cs
dc.rights© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimcs
dc.subjectinfinitesimal plasticitycs
dc.subjectMohr-Coulomb yield surfacecs
dc.subjectimplicit return-mapping schemecs
dc.subjectconsistent tangent operatorcs
dc.subjectsemismooth Newton methodcs
dc.subjectincremental limit analysiscs
dc.subjectslope stabilitycs
dc.titleSubdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticitycs
dc.typearticlecs
dc.identifier.doi10.1002/zamm.201600215
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume97cs
dc.description.issue12cs
dc.description.lastpage1523cs
dc.description.firstpage1502cs
dc.identifier.wos000416847100001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam