Show simple item record

dc.contributor.authorVodstrčil, Petr
dc.contributor.authorBouchala, Jiří
dc.contributor.authorJarošová, Marta
dc.contributor.authorDostál, Zdeněk
dc.date.accessioned2018-02-02T08:08:22Z
dc.date.available2018-02-02T08:08:22Z
dc.date.issued2017
dc.identifier.citationApplications of Mathematics. 2017, vol. 62, no. 6, p. 699-718.cs
dc.identifier.issn0862-7940
dc.identifier.issn1572-9109
dc.identifier.urihttp://hdl.handle.net/10084/123588
dc.description.abstractBounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements of the clusters arising in the discretization of problems governed by 2D Laplacian. The estimates depend on the decomposition and discretization parameters and gluing conditions. We also show how to plug the results into the analysis of H-TFETI methods and compare the estimates with numerical experiments. The results are useful for the analysis and implementation of powerful massively parallel scalable algorithms for the solution of variational inequalities.cs
dc.language.isoencs
dc.publisherMatematický ústav AV ČRcs
dc.relation.ispartofseriesApplications of Mathematicscs
dc.relation.urihttps://doi.org/10.21136/AM.2017.0193-17cs
dc.rights© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017cs
dc.subjecttwo-level domain decompositioncs
dc.subjecthybrid FETIcs
dc.subjectSchur complementcs
dc.subjectbounds on the spectrumcs
dc.titleOn conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplaciancs
dc.typearticlecs
dc.identifier.doi10.21136/AM.2017.0193-17
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume62cs
dc.description.issue6cs
dc.description.lastpage718cs
dc.description.firstpage699cs
dc.identifier.wos000419946700009


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record