Show simple item record

dc.contributor.authorMarček, Dušan
dc.contributor.authorRojček, Michal
dc.date.accessioned2018-03-14T09:54:01Z
dc.date.available2018-03-14T09:54:01Z
dc.date.issued2017
dc.identifier.citationActa Polytechnica Hungarica. 2017, vol. 14, no. 5, p. 49-63.cs
dc.identifier.issn1785-8860
dc.identifier.urihttp://hdl.handle.net/10084/124864
dc.description.abstractThis article describes the design of a new model IKMART, for classification of documents and their incorporation into categories based on the KMART architecture. The architecture consists of two networks that mutually cooperate through the interconnection of weights and the output matrix of the coded documents. The architecture retains required network features such as incremental learning without the need of descriptive and input/output fuzzy data, learning acceleration and classification of documents and a minimal number of user-defined parameters. The conducted experiments with real documents showed a more precise categorization of documents and higher classification performance in comparison to the classic KMART algorithm.cs
dc.format.extent606645 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherÓbuda Universitycs
dc.relation.ispartofseriesActa Polytechnica Hungaricacs
dc.relation.urihttp://epa.oszk.hu/02400/02461/00074/pdf/EPA02461_acta_polytechnica_hungarica_2017_05_049-063.pdfcs
dc.subjectimproved KMARTcs
dc.subjectcategory proliferation problemcs
dc.subjectfuzzy clusteringcs
dc.subjectfuzzy categorizationcs
dc.titleThe category proliferation problem in ART neural networkscs
dc.typearticlecs
dc.identifier.doi10.12700/APH.14.5.2017.5.4
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue5cs
dc.description.lastpage63cs
dc.description.firstpage49cs
dc.identifier.wos000426127200004


Files in this item

This item appears in the following Collection(s)

Show simple item record