dc.contributor.author | Marček, Dušan | |
dc.contributor.author | Rojček, Michal | |
dc.date.accessioned | 2018-03-14T09:54:01Z | |
dc.date.available | 2018-03-14T09:54:01Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Acta Polytechnica Hungarica. 2017, vol. 14, no. 5, p. 49-63. | cs |
dc.identifier.issn | 1785-8860 | |
dc.identifier.uri | http://hdl.handle.net/10084/124864 | |
dc.description.abstract | This article describes the design of a new model IKMART, for classification of documents and their incorporation into categories based on the KMART architecture. The architecture consists of two networks that mutually cooperate through the interconnection of weights and the output matrix of the coded documents. The architecture retains required network features such as incremental learning without the need of descriptive and input/output fuzzy data, learning acceleration and classification of documents and a minimal number of user-defined parameters. The conducted experiments with real documents showed a more precise categorization of documents and higher classification performance in comparison to the classic KMART algorithm. | cs |
dc.format.extent | 606645 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | Óbuda University | cs |
dc.relation.ispartofseries | Acta Polytechnica Hungarica | cs |
dc.relation.uri | http://epa.oszk.hu/02400/02461/00074/pdf/EPA02461_acta_polytechnica_hungarica_2017_05_049-063.pdf | cs |
dc.subject | improved KMART | cs |
dc.subject | category proliferation problem | cs |
dc.subject | fuzzy clustering | cs |
dc.subject | fuzzy categorization | cs |
dc.title | The category proliferation problem in ART neural networks | cs |
dc.type | article | cs |
dc.identifier.doi | 10.12700/APH.14.5.2017.5.4 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 14 | cs |
dc.description.issue | 5 | cs |
dc.description.lastpage | 63 | cs |
dc.description.firstpage | 49 | cs |
dc.identifier.wos | 000426127200004 | |